Skip to main content
Log in

Na+–sulfate cotransporter SLC13A1

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Sulfate is essential for normal physiology. The kidney plays a major role in sulfate homeostasis. Sulfate is freely filtered and strongly reabsorbed in the proximal tubule. The apical membrane Na+–sulfate cotransporter NaS1 (SLC13A1) mediates sulfate (re)absorption across renal proximal tubule and small intestinal epithelia. NaS1 encodes a 595-amino acid (≈66 kDa) protein with 13 putative transmembrane domains. Its substrate preferences are sodium and sulfate, thiosulfate, and selenate, and its activity is inhibited by molybdate, selenate, tungstate, thiosulfate, succinate, and citrate. NaS1 is primarily expressed in the kidney (proximal tubule) and intestine (duodenum to colon). NaS1 expression is down-regulated in the renal cortex by high sulfate diet, hypothyroidism, vitamin D depletion, glucocorticoids, hypokalemia, metabolic acidosis, and NSAIDs and up-regulated by low sulfate diet, thyroid hormone, vitamin D supplementation, growth hormone, chronic renal failure, and during post-natal growth. Disruption of murine NaS1 gene leads to hyposulfatemia and hypersulfaturia, as well as changes in metabolism, growth, fecundity, behavior, gut physiology, and liver detoxification. This suggests that NaS1 is an important sulfate transporter and its disruption leads to perturbed sulfate homeostasis, which contributes to numerous pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aronson PS (1989) The renal proximal tubule: a model for diversity of anion exchangers and stilbene-sensitive anion transporters. Annu Rev Plant Physiol Plant Mol Biol 51:419–441

    CAS  Google Scholar 

  2. Bastlein C, Burckhardt G (1986) Sensitivity of rat renal luminal and contraluminal sulfate transport to DIDS. Am J Physiol 250:F226–F234

    CAS  PubMed  Google Scholar 

  3. Beck L, Markovich D (2000) The mouse Na(+)–sulfate cotransporter gene Nas1. Cloning, tissue distribution, gene structure, chromosomal assignment, and transcriptional regulation by vitamin D. J Biol Chem 275:11880–11890

    Article  CAS  PubMed  Google Scholar 

  4. Bissig M, Hagenbuch B, Stieger B, Koller T, Meier PJ (1994) Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J Biol Chem 269:3017–3021

    CAS  PubMed  Google Scholar 

  5. Brazy PC, Dennis VW (1981) Sulfate transport in rabbit proximal convoluted tubules: presence of anion exchange. Am J Physiol 241:F300–F307

    CAS  PubMed  Google Scholar 

  6. Busch AE, Waldegger S, Herzer T, Biber J, Markovich D, Murer H, Lang F (1994) Electrogenic cotransport of Na+ and sulfate in Xenopus oocytes expressing the cloned Na+SO4(2-) transport protein NaSi-1. J Biol Chem 269:12407–12409

    CAS  PubMed  Google Scholar 

  7. Cole DE, Baldwin LS, Stirk LJ (1984) Increased inorganic sulfate in mother and fetus at parturition: evidence for a fetal-to-maternal gradient. Am J Obstet Gynecol 148:596–599

    Article  CAS  PubMed  Google Scholar 

  8. David C, Ullrich KJ (1992) Substrate specificity of the luminal Na+-dependent sulphate transport system in the proximal renal tubule as compared to the contraluminal sulphate exchange system. Pflugers Arch 421:455–465

    Article  CAS  PubMed  Google Scholar 

  9. Dawson PA, Beck L, Markovich D (2003) Hyposulfatemia, growth retardation, reduced fertility and seizures in mice lacking a functional NaSi-1 gene. Proc Natl Acad Sci U S A 100:13704–13709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Dawson PA, Choyce A, Chuang C, Whitelock J, Markovich D, Leggatt GR (2010) Enhanced tumor growth in the NaS1 sulfate transporter null mouse. Cancer Sci 101:369–373

    Article  CAS  PubMed  Google Scholar 

  11. Dawson PA, Gardiner B, Grimmond S, Markovich D (2006) Transcriptional profile reveals altered hepatic lipid and cholesterol metabolism in hyposulfatemic NaS1 null mice. Physiol Genomics 26:116–124

    Article  CAS  PubMed  Google Scholar 

  12. Dawson PA, Gardiner B, Lee S, Grimmond S, Markovich D (2008) Kidney transcriptome reveals altered steroid homeostasis in NaS1 sulfate transporter null mice. J Steroid Biochem Mol Biol 112:55–62

    Article  CAS  PubMed  Google Scholar 

  13. Dawson PA, Huxley S, Gardiner B, Tran T, McAuley JL, Grimmond S, McGuckin MA, Markovich D (2009) Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse. Gut 58:910–919

    Article  CAS  PubMed  Google Scholar 

  14. Dawson PA, Markovich D (2002) Regulation of the mouse Nas1 promoter by vitamin D and thyroid hormone. Pflugers Arch 444:353–359

    Article  CAS  PubMed  Google Scholar 

  15. Dawson PA, Markovich D (2005) Pathogenetics of the human SLC26 transporters. Curr Med Chem 12:385–396

    Article  CAS  PubMed  Google Scholar 

  16. Dawson PA, Russell CS, Lee S, McLeay SC, van Dongen JM, Cowley DM, Clarke LA, Markovich D (2010) Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J Clin Invest 120:706–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Dawson P, Sim P, Simmons D, Markovich D (2011) Fetal loss and hyposulfataemia in pregnant NaS1 transporter null mice. J Reprod Dev 57:444–449

    Article  CAS  PubMed  Google Scholar 

  18. Dawson PA, Steane SE, Markovich D (2004) Behavioural abnormalities of the hyposulphataemic Nas1 knock-out mouse. Behav Brain Res 154:457–463

    Article  CAS  PubMed  Google Scholar 

  19. Dawson PA, Steane SE, Markovich D (2005) Impaired memory and olfactory performance in NaSi-1 sulphate transporter deficient mice. Behav Brain Res 159:15–20

    Article  CAS  PubMed  Google Scholar 

  20. Fernandes I, Hampson G, Cahours X, Morin P, Coureau C, Couette S, Prie D, Biber J, Murer H, Friedlander G, Silve C (1997) Abnormal sulfate metabolism in vitamin D-deficient rats. J Clin Invest 100:2196–2203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fernandes I, Laouari D, Tutt P, Hampson G, Friedlander G, Silve C (2001) Sulfate homeostasis, NaSi-1 cotransporter, and SAT-1 exchanger expression in chronic renal failure in rats. Kidney Int 59:210–221

    Article  CAS  PubMed  Google Scholar 

  22. Florin T, Neale G, Gibson GR, Christl SU, Cummings JH (1991) Metabolism of dietary sulphate: absorption and excretion in humans. Gut 32:766–773

    Article  CAS  PubMed  Google Scholar 

  23. Goudsmit A Jr, Power MH, Bollman JL (1939) The excretion of sulfates by the dog. Am J Physiol 125:506

    CAS  Google Scholar 

  24. Hagenbuch B, Stange G, Murer H (1985) Transport of sulphate in rat jejunal and proximal tubular basolateral membrane vesicles. Pflugers Arch 405:202–208

    Article  CAS  PubMed  Google Scholar 

  25. Hierholzer K, Cade R, Gurd R, Kessler R, Pitts R (1960) Stop flow analysis of renal reabsorption and excretion of sulfate in the dog. Am J Physiol 198:833–837

    CAS  PubMed  Google Scholar 

  26. Karniski LP, Lotscher M, Fucentese M, Hilfiker H, Biber J, Murer H (1998) Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am J Physiol 275:F79–F87

    CAS  PubMed  Google Scholar 

  27. Kuo SM, Aronson PS (1988) Oxalate transport via the sulfate/HCO3 exchanger in rabbit renal basolateral membrane vesicles. J Biol Chem 263:9710–9717

    CAS  PubMed  Google Scholar 

  28. Lee A, Beck L, Markovich D (2000) The human renal sodium sulfate cotransporter (SLC13A1; hNaSi-1) cDNA and gene: organization, chromosomal localization, and functional characterization. Genomics 70:354–363

    Article  CAS  PubMed  Google Scholar 

  29. Lee S, Dawson PA, Hewavitharana AK, Shaw PN, Markovich D (2006) Disruption of NaS1 sulfate transport function in mice leads to enhanced acetaminophen-induced hepatotoxicity. Hepatology 43:1241–1247

    Article  CAS  PubMed  Google Scholar 

  30. Lee A, Dawson PA, Markovich D (2005) NaSi-1 and Sat-1: Structure, function and transcriptional regulation of two genes encoding renal proximal tubular sulfate transporters. Int J Biochem Cell Biol 37:1350–1356

    Article  CAS  PubMed  Google Scholar 

  31. Lee S, Kesby JP, Muslim MD, Steane SE, Eyles DW, Dawson PA, Markovich D (2007) Hyperserotonaemia and reduced brain serotonin levels in NaS1 sulphate transporter null mice. Neuroreport 18:1981–1985

    Article  CAS  PubMed  Google Scholar 

  32. Lee A, Markovich D (2004) Characterization of the human renal Na(+)-sulphate cotransporter gene ( NAS1) promoter. Pflugers Arch 448:490–499

    CAS  PubMed  Google Scholar 

  33. Lee HJ, Sagawa K, Shi W, Murer H, Morris ME (2000) Hormonal regulation of sodium/sulfate co-transport in renal epithelial cells. Proc Soc Exp Biol Med 225:49–57

    Article  CAS  PubMed  Google Scholar 

  34. Lotscher M, Custer M, Quabius ES, Kaissling B, Murer H, Biber J (1996) Immunolocalization of Na/SO4-cotransport (NaSi-1) in rat kidney. Pflugers Arch - Eur J Physiol 432:373–378

    Article  CAS  Google Scholar 

  35. Low I, Friedrich T, Burckhardt G (1984) Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am J Physiol 246:F334–F342

    CAS  PubMed  Google Scholar 

  36. Lücke H, Stange G, Murer H (1979) Sulphate-ion/sodium-ion co-transport by brush-border membrane vesicles isolated from rat kidney cortex. Biochem J 182:223–229

    PubMed  Google Scholar 

  37. Markovich D (2001) Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81:1499–1533

    CAS  PubMed  Google Scholar 

  38. Markovich D (2008) Expression cloning and radiotracer uptakes in Xenopus laevis oocytes. Nat Protoc 3:1975–1980

    Article  CAS  PubMed  Google Scholar 

  39. Markovich D, Aronson PS (2007) Specificity and regulation of renal sulfate transporters. Annu Rev Physiol 69:361–375

    Article  CAS  PubMed  Google Scholar 

  40. Markovich D, Forgo J, Stange G, Biber J, Murer H (1993) Expression cloning of rat renal Na+/SO4(2-) cotransport. Proc Natl Acad Sci U S A 90:8073–8077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Markovich D, Murer H, Biber J, Sakhaee K, Pak C, Levi M (1998) Dietary sulfate regulates the expression of the renal brush border Na/Si cotransporter NaSi-1. J Am Soc Nephrol 9:1568–1573

    CAS  PubMed  Google Scholar 

  42. Markovich D, Wang H, Puttaparthi K, Zajicek H, Rogers T, Murer H, Biber J, Levi M (1999) Chronic K depletion inhibits renal brush border membrane Na/sulfate cotransport. Kidney Int 55:244–251

    Article  CAS  PubMed  Google Scholar 

  43. Markovich D, Werner A, Murer H (1999) Expression cloning with Xenopus oocytes. In: Hildebrandt F, Igarashi P (eds) Techniques in molecular medicine. Springer, Heidelberg, pp 310–318

    Chapter  Google Scholar 

  44. Morris ME, Levy G (1983) Plasma inorganic sulfate concentrations in pregnant women. J Pharm Sci 72:715–716

    Article  CAS  PubMed  Google Scholar 

  45. Pritchard JB, Renfro JL (1983) Renal sulfate transport at the basolateral membrane is mediated by anion exchange. Proc Natl Acad Sci U S A 80:2603–2607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Puttaparthi K, Markovich D, Halaihel N, Wilson P, Zajicek HK, Wang H, Biber J, Murer H, Rogers T, Levi M (1999) Metabolic acidosis regulates rat renal Na-Si cotransport activity. Am J Physiol 276:C1398–C1404

    CAS  PubMed  Google Scholar 

  47. Regeer RR, Markovich D (2004) A dileucine motif targets the sulfate anion transporter sat-1 to the basolateral membrane in renal cell lines. Am J Physiol Cell Physiol 287:C365–C372

    Article  CAS  PubMed  Google Scholar 

  48. Sagawa K, Benincosa LJ, Murer H, Morris ME (1998) Ibuprofen-induced changes in sulfate renal transport. J Pharmacol Exp Ther 287:1092–1097

    CAS  PubMed  Google Scholar 

  49. Sagawa K, DuBois DC, Almon RR, Murer H, Morris ME (1998) Cellular mechanisms of renal adaptation of sodium dependent sulfate cotransport to altered dietary sulfate in rats. J Pharmacol Exp Ther 287:1056–1062

    CAS  PubMed  Google Scholar 

  50. Sagawa K, Han B, DuBois DC, Murer H, Almon RR, Morris ME (1999) Age- and growth hormone-induced alterations in renal sulfate transport. J Pharmacol Exp Ther 290:1182–1187

    CAS  PubMed  Google Scholar 

  51. Sagawa K, Murer H, Morris ME (1999) Effect of experimentally induced hypothyroidism on sulfate renal transport in rats. Am J Physiol 276:F164–F171

    CAS  PubMed  Google Scholar 

  52. Schneider EG, Durham JC, Sacktor B (1984) Sodium-dependent transport of inorganic sulfate by rabbit renal brush-border membrane vesicles. Effects of other ions. J Biol Chem 259:14591–14599

    CAS  PubMed  Google Scholar 

  53. Turner RJ (1984) Sodium-dependent sulfate transport in renal outer cortical brush border membrane vesicles. Am J Physiol 247:F793–F798

    CAS  PubMed  Google Scholar 

  54. Ullrich KJ, Murer H (1982) Sulphate and phosphate transport in the renal proximal tubule. Philos Trans R Soc B 299:549–558

    Article  CAS  Google Scholar 

  55. Ullrich KJ, Rumrich G (1988) Contraluminal transport systems in the proximal renal tubule involved in secretion of organic anions. Am J Physiol 254:F453–F462

    CAS  PubMed  Google Scholar 

  56. Ullrich KJ, Rumrich G, Kloess S (1980) Bidirectional active transport of thiosulfate in the proximal convolution of the rat kidney. Pflugers Arch 387:127–132

    Article  CAS  PubMed  Google Scholar 

  57. Ullrich KJ, Rumrich G, Kloess S (1984) Contraluminal sulfate transport in the proximal tubule of the rat kidney. I. Kinetics, effects of K+, Na+, Ca2+, H+ and anions. Pflugers Arch 402:264–271

    Article  CAS  PubMed  Google Scholar 

  58. Ullrich KJ, Rumrich G, Kloess S (1985) Contraluminal sulfate transport in the proximal tubule of the rat kidney. II. Specificity: sulfate-ester, sulfonates and amino sulfonates. Pflugers Arch 404:293–299

    Article  CAS  PubMed  Google Scholar 

  59. Ullrich KJ, Rumrich G, Kloess S (1985) Contraluminal sulfate transport in the proximal tubule of the rat kidney. III. Specificity: disulfonates, di- and tri-carboxylates and sulfo-carboxylates. Pflugers Arch 404:300–306

    Article  CAS  PubMed  Google Scholar 

  60. Ullrich KJ, Rumrich G, Kloess S (1985) Contraluminal sulfate transport in the proximal tubule of the rat kidney. IV. Specificity: salicylate analogs. Pflugers Arch 404:307–310

    Article  CAS  PubMed  Google Scholar 

  61. Ullrich KJ, Rumrich G, Kloess S (1985) Contraluminal sulfate transport in the proximal tubule of the rat kidney. V. Specificity: phenophthaleins, sulfonphthaleins and other sulfodyes, sulfamoyl compounds and dyphenylamine-2-carboxylates. Pflugers Arch 404:311–318

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the author's laboratory has been supported by the Australian National Health and Medical Research Council, the Australian Research Council, the Cancer Council Queensland, and the University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Markovich.

Additional information

This article is published as part of the Special Issue on “Sodium-coupled transporters in health and disease.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markovich, D. Na+–sulfate cotransporter SLC13A1. Pflugers Arch - Eur J Physiol 466, 131–137 (2014). https://doi.org/10.1007/s00424-013-1388-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1388-8

Keywords

Navigation