Abstract
Circulating leptin levels are elevated in obesity and hyperleptinaemia has been postulated to be an independent risk factor for the development of cardiovascular diseases. Although many studies have been published on the mechanisms involved in the effects of leptin on cardiac function and pathological remodeling, scarce information is currently available analyzing the influence of prolonged leptin treatment on ionic cardiac channels remodeling in adult ventricular myocytes. Enzymatically isolated adult rat ventricular myocytes were treated with leptin or vehicle for 48h. Real-Time RT-PCR were used to analyze mRNA expression of Kir2.1, Cav1.2, Cav 3.1, Kv4.2 and Kv4.3 α-subunits and KChIP2 auxiliary subunit. The fast transient outward potassium channels (Itof) α-subunits Kv4.2, Kv4.3 and KChIP2 were analyzed by Western-blot. The fast transient outward potassium current and the action potentials were recorded in isolated myocytes by the whole-cell patch-clamp technique. Leptin treatment induced an up-regulation of Kv4.2, Kv4.3 and KChIP2 subunits mRNA expression. However, transcriptional levels of Kir2.1, Cav1.2, or Cav3.1 α-subunit channels were unmodified by leptin. Protein expression levels of Kv4.2, Kv4.3 and KChIP2 subunits were also increased by leptin. The electrophysiological study showed that leptin increases the fast transient outward potassium current amplitudes and densities shortening action potential duration. In addition, leptin activated Akt signaling in cardiomyocytes and this mechanism was involved in the effect of leptin on Itof channels. In conclusión, leptin increases both the expression and function of Itof channels in adult ventricular myocytes and this mechanism involves Akt signaling. Altogether these data suggest that leptin could exert beneficial or detrimental effects depending on the initial ventricular myocyte repolarizing reserve.






References
Abe Y, Ono K, Kawamura T, Wada H, Kita T, Shimatsu A, Hasegawa K (2007) Leptin induces elongation of cardiac myocytes and causes eccentric left ventricular dilatation with compensation. Am J Physiol Heart Circ Physiol 292:H2387–H2396. doi:10.1152/ajpheart.00579.2006
Abel ED, Litwin SE, Sweeney G (2008) Cardiac remodeling in obesity. Physiol Rev 88:389–419, 10.1152/physrev.00017.2007
Aiba T, Tomaselli GF (2010) Electrical remodeling in the failing heart. Curr Opin Cardiol 25:29–36. doi:10.1097/HCO.0b013e328333d3d6
Andjelković M, Jakubowicz T, Cron P, Ming XF, Han JW, Hemmings BA (1996) Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci U S A 93:5699–5704
Ashrafian H, Athanasiou T, le Roux CW (2011) Heart remodelling and obesity: the complexities and variation of cardiac geometry. Heart 97:171–172. doi:10.1136/hrt.2010.207092
Bassani RA (2006) Transient outward potassium current and Ca2+ homeostasis in the heart: beyond the action potential. Braz J Med Biol Res 39:393–403
Bénitah JP, Gomez AM, Bailly P, Da Ponte JP, Berson G, Delgado C, Lorente P (1993) Heterogeneity of the early outward current in ventricular cells isolated from normal and hypertrophied rat hearts. J Physiol 469:111–138
Bénitah JP, Perrier E, Gómez AM, Vassort G (2001) Effects of aldosterone on transient outward K + current density in rat ventricular myocytes. J Physiol 537:151–160
Berndt N, Yang H, Trinczek B, Betzi S, Zhang Z, Wu B, Lawrence NJ, Pellecchia M, Schönbrunn E, Cheng JQ, Sebti SM (2010) The Akt activation inhibitor TCN-P inhibits Akt phosphorylation by binding to the PH domain of Akt and blocking its recruitment to the plasma membrane. Cell Death Differ 17:1795–1804, 10.1038/cdd.2010.63
Beuckelmann DJ, Näbauer M, Erdmann E (1993) Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 73:379–385
Brognard J, Sierecki E, Gao T, Newton AC (2007) PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 25:917–931. doi:10.1016/j.molcel.2007.02.017
Casis O, Gallego M, Iriarte M, Sánchez-Chapula JA (2000) Effects of diabetic cardiomyopathy on regional electrophysiologic characteristics of rat ventricle. Diabetologia 43:101–109. doi:10.1007/s001250050013
de Simone G, Devereux RB, Roman MJ, Alderman MH, Laragh JH (1994) Relation of obesity and gender to left ventricular hypertrophy in normotensive and hypertensive adults. Hypertension 23:600–606
Enriori PJ, Evans AE, Sinnayah P, Cowley MA (2006) Leptin resistance and obesity. Obesity (Silver Spring) 14(Suppl 5):254S–258S. doi:10.1038/oby.2006.319
Fernandez-Velasco M, Ruiz-Hurtado G, Hurtado O, Moro MA, Delgado C (2007) TNF-alpha downregulates transient outward potassium current in rat ventricular myocytes through iNOS overexpression and oxidant species generation. Am J Physiol Heart Circ Physiol 293:H238–H245. doi:10.1152/ajpheart.01122.2006
Frame S, Cohen P (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359:1–16
Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770. doi:10.1038/27376
Gómez AM, Benitah JP, Henzel D, Vinet A, Lorente P, Delgado C (1997) Modulation of electrical heterogeneity by compensated hypertrophy in rat left ventricle. Am J Physiol 272:H1078–H1086
Gong N, Bodi I, Zobel C, Schwartz A, Molkentin JD, Backx PH (2006) Calcineurin increases cardiac transient outward K + currents via transcriptional up-regulation of Kv4.2 channel subunits. J Biol Chem 281:38498–38506. doi:10.1074/jbc.M607774200
Guzmán-Ruiz R, Somoza B, Gil-Ortega M, Merino B, Cano V, Attané C, Castan-Laurell I, Valet P, Fernández-Alfonso MS, Ruiz-Gayo M (2010) Sensitivity of cardiac carnitine palmitoyltransferase to malonyl-CoA is regulated by leptin: similarities with a model of endogenous hyperleptinemia. Endocrinology 151:1010–1018. doi:10.1210/en.2009-1170
Huang B, Qin D, Deng L, Boutjdir M, El-Sherif N (2000) Reexpression of T-type Ca2+ channel gene and current in post-infarction remodeled rat left ventricle. Cardiovasc Res 46:442–449
Hughes V (2013) The big fat truth. Nature 497:428–430. doi:10.1038/497428a
Kääb S, Dixon J, Duc J, Ashen D, Näbauer M, Beuckelmann DJ, Steinbeck G, McKinnon D, Tomaselli GF (1998) Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98:1383–1393
Kääb S, Nuss HB, Chiamvimonvat N, O’Rourke B, Pak PH, Kass DA, Marban E, Tomaselli GF (1996) Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res 78:262–273
Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, Kannel WB, Vasan RS (2002) Obesity and the risk of heart failure. N Engl J Med 347:305–313. doi:10.1056/NEJMoa020245
Li GR, Lau CP, Ducharme A, Tardif JC, Nattel S (2002) Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. Am J Physiol Heart Circ Physiol 283:H1031–H1041. doi:10.1152/ajpheart.00105.2002
Li X, Xu Z, Li S, Rozanski GJ (2005) Redox regulation of I to remodeling in diabetic rat heart. Am J Physiol Heart Circ Physiol 288:H1417–H1424. doi:10.1152/ajpheart.00559.2004
Martínez ML, Heredia MP, Delgado C (1999) Expression of T-type Ca(2+) channels in ventricular cells from hypertrophied rat hearts. J Mol Cell Cardiol 31:1617–1625. doi:10.1006/jmcc.1999.0998
Matsui T, Li L, Wu JC, Cook SA, Nagoshi T, Picard MH, Liao R, Rosenzweig A (2002) Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem 277:22896–22901. doi:10.1074/jbc.M200347200
Matsui T, Rosenzweig A (2005) Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. J Mol Cell Cardiol 38:63–71. doi:10.1016/j.yjmcc.2004.11.005
McMullen JR, Amirahmadi F, Woodcock EA, Schinke-Braun M, Bouwman RD, Hewitt KA, Mollica JP, Zhang L, Zhang Y, Shioi T, Buerger A, Izumo S, Jay PY, Jennings GL (2007) Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc Natl Acad Sci U S A 104:612–617. doi:10.1073/pnas.0606663104
Mewes T, Ravens U (1994) L-type calcium currents of human myocytes from ventricle of non-failing and failing hearts and from atrium. J Mol Cell Cardiol 26:1307–1320. doi:10.1006/jmcc.1994.1149
Mukherjee R, Hewett KW, Walker JD, Basler CG, Spinale FG (1998) Changes in L-type calcium channel abundance and function during the transition to pacing-induced congestive heart failure. Cardiovasc Res 37:432–444
Nattel S, Maguy A, Le Bouter S, Yeh YH (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87:425–456. doi:10.1152/physrev.00014.2006
Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85:1205–1253. doi:10.1152/physrev.00002.2005
Oreopoulos A, Padwal R, Kalantar-Zadeh K, Fonarow GC, Norris CM, McAlister FA (2008) Body mass index and mortality in heart failure: a meta-analysis. Am Heart J 156:13–22. doi:10.1016/j.ahj.2008.02.014
Ouadid H, Albat B, Nargeot J (1995) Calcium currents in diseased human cardiac cells. J Cardiovasc Pharmacol 25:282–291
Perego L, Pizzocri P, Corradi D, Maisano F, Paganelli M, Fiorina P, Barbieri M, Morabito A, Paolisso G, Folli F, Pontiroli AE (2005) Circulating leptin correlates with left ventricular mass in morbid (grade III) obesity before and after weight loss induced by bariatric surgery: a potential role for leptin in mediating human left ventricular hypertrophy. J Clin Endocrinol Metab 90:4087–4093. doi:10.1210/jc.2004-1963
Philip-Couderc P, Tavares NI, Roatti A, Lerch R, Montessuit C, Baertschi AJ (2008) Forkhead transcription factors coordinate expression of myocardial KATP channel subunits and energy metabolism. Circ Res 102:e20–e35. doi:10.1161/CIRCRESAHA.107.166744
Pitt GS, Dun W, Boyden PA (2006) Remodeled cardiac calcium channels. J Mol Cell Cardiol 41:373–388. doi:10.1016/j.yjmcc.2006.06.071
Purdham DM, Zou MX, Rajapurohitam V, Karmazyn M (2004) Rat heart is a site of leptin production and action. Am J Physiol Heart Circ Physiol 287:H2877–H2884. doi:10.1152/ajpheart.00499.2004
Ren J (2004) Leptin and hyperleptinemia—from friend to foe for cardiovascular function. J Endocrinol 181:1–10
Rider OJ, Petersen SE, Francis JM, Ali MK, Hudsmith LE, Robinson MR, Clarke K, Neubauer S (2011) Ventricular hypertrophy and cavity dilatation in relation to body mass index in women with uncomplicated obesity. Heart 97:203–208. doi:10.1136/hrt.2009.185009
Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG, Mookadam F, Lopez-Jimenez F (2006) Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies. Lancet 368:666–678. doi:10.1016/S0140-6736(06)69251-9
Ruiz-Hurtado G, Gomez-Hurtado N, Fernandez-Velasco M, Calderon E, Smani T, Ordonez A, Cachofeiro V, Bosca L, Diez J, Gomez AM, Delgado C (2012) Cardiotrophin-1 induces sarcoplasmic reticulum Ca-2 leak and arrhythmogenesis in adult rat ventricular myocytes. Cardiovasc Res 96:81–89. doi:10.1093/cvr/cvs234
Ruiz-Hurtado G, Gómez-Hurtado N, Fernández-Velasco M, Calderón E, Smani T, Ordoñez A, Cachofeiro V, Boscá L, Díez J, Gómez AM, Delgado C (2012) Cardiotrophin-1 induces sarcoplasmic reticulum Ca2+ leak and arrhythmogenesis in adult rat ventricular myocytes. Cardiovasc Res 96:81–89, 10.1093/cvr/cvs234
Sah R, Ramirez RJ, Oudit GY, Gidrewicz D, Trivieri MG, Zobel C, Backx PH (2003) Regulation of cardiac excitation–contraction coupling by action potential repolarization: role of the transient outward potassium current (I(to)). J Physiol 546:5–18
Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, Cantley LC, Izumo S (2000) The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J 19:2537–2548. doi:10.1093/emboj/19.11.2537
Smith CC, Mocanu MM, Davidson SM, Wynne AM, Simpkin JC, Yellon DM (2006) Leptin, the obesity-associated hormone, exhibits direct cardioprotective effects. Br J Pharmacol 149:5–13. doi:10.1038/sj.bjp.0706834
Soliman AT, Omar M, Assem HM, Nasr IS, Rizk MM, El Matary W, El Alaily RK (2002) Serum leptin concentrations in children with type 1 diabetes mellitus: relationship to body mass index, insulin dose, and glycemic control. Metabolism 51:292–296
Stucchi P, Guzmán-Ruiz R, Gil-Ortega M, Merino B, Somoza B, Cano V, de Castro J, Sevillano J, Ramos MP, Fernández-Alfonso MS, Ruiz-Gayo M (2011) Leptin resistance develops spontaneously in mice during adult life in a tissue-specific manner. Consequences for hepatic steatosis. Biochimie 93:1779–1785. doi:10.1016/j.biochi.2011.06.020
Sweeney G (2010) Cardiovascular effects of leptin. Nat Rev Cardiol 7:22–29. doi:10.1038/nrcardio.2009.224
Van Der Heide LP, Hoekman MF, Smidt MP (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380:297–309. doi:10.1042/BJ20040167
Wang Y, Hill JA (2010) Electrophysiological remodeling in heart failure. J Mol Cell Cardiol 48:619–632. doi:10.1016/j.yjmcc.2010.01.009
Wannamethee SG, Shaper AG, Whincup PH, Lennon L, Sattar N (2011) Obesity and risk of incident heart failure in older men with and without pre-existing coronary heart disease: does leptin have a role? J Am Coll Cardiol 58:1870–1877. doi:10.1016/j.jacc.2011.06.057
Yang R, Barouch LA (2007) Leptin signaling and obesity: cardiovascular consequences. Circ Res 101:545–559. doi:10.1161/CIRCRESAHA.107.156596
Yang KC, Foeger NC, Marionneau C, Jay PY, McMullen JR, Nerbonne JM (2010) Homeostatic regulation of electrical excitability in physiological cardiac hypertrophy. J Physiol 588:5015–5032. doi:10.1113/jphysiol.2010.197418
Yang KC, Jay PY, McMullen JR, Nerbonne JM (2012) Enhanced cardiac PI3Kα signalling mitigates arrhythmogenic electrical remodelling in pathological hypertrophy and heart failure. Cardiovasc Res 93:252–262. doi:10.1093/cvr/cvr283
Yang KC, Tseng YT, Nerbonne JM (2012) Exercise training and PI3Kα-induced electrical remodeling is independent of cellular hypertrophy and Akt signaling. J Mol Cell Cardiol 53:532–541. doi:10.1016/j.yjmcc.2012.07.004
Yao JJ, Gao XF, Chow CW, Zhan XQ, Hu CL, Mei YA (2012) Neuritin activates insulin receptor pathway to up-regulate Kv4.2-mediated transient outward K + current in rat cerebellar granule neurons. J Biol Chem 287:41534–41545. doi:10.1074/jbc.M112.390260
Yao JJ, Sun J, Zhao QR, Wang CY, Mei YA (2013) Neuregulin-1 /ErbB4 signaling regulates Kv4.2-mediated transient outward K + current through the Akt/mTOR pathway. Am J Physiol Cell Physiol 304(12):H1651–H1661. doi:10.1152/ajpcell.00041.2013
Zeidan A, Hunter JC, Javadov S, Karmazyn M (2011) mTOR mediates RhoA-dependent leptin-induced cardiomyocyte hypertrophy. Mol Cell Biochem 352:99–108. doi:10.1007/s11010-011-0744-2
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432. doi:10.1038/372425a0
Acknowledgment
The authors thank Manuel Bas for expert technical assistance.
Sources of funding
This work was supported by MICINN (SAF2010-16377), RIC (Red de Investigación Cardiovascular; RD12/0042/0019), Mutua Madrileña (FMM2010), and Instituto de Salud Carlos III (ISCIII; CP11/0080). N.G.H. is a predoctoral fellow of the Spanish Ministry of Education.
Conflict of interest
None
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(DOCX 111 kb)
Rights and permissions
About this article
Cite this article
Gómez-Hurtado, N., Fernández-Velasco, M., Fernández-Alfonso, M.S. et al. Prolonged leptin treatment increases transient outward K+ current via upregulation of Kv4.2 and Kv4.3 channel subunits in adult rat ventricular myocytes. Pflugers Arch - Eur J Physiol 466, 903–914 (2014). https://doi.org/10.1007/s00424-013-1348-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00424-013-1348-3