Skip to main content

Advertisement

Log in

Prolonged leptin treatment increases transient outward K+ current via upregulation of Kv4.2 and Kv4.3 channel subunits in adult rat ventricular myocytes

Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Circulating leptin levels are elevated in obesity and hyperleptinaemia has been postulated to be an independent risk factor for the development of cardiovascular diseases. Although many studies have been published on the mechanisms involved in the effects of leptin on cardiac function and pathological remodeling, scarce information is currently available analyzing the influence of prolonged leptin treatment on ionic cardiac channels remodeling in adult ventricular myocytes. Enzymatically isolated adult rat ventricular myocytes were treated with leptin or vehicle for 48h. Real-Time RT-PCR were used to analyze mRNA expression of Kir2.1, Cav1.2, Cav 3.1, Kv4.2 and Kv4.3 α-subunits and KChIP2 auxiliary subunit. The fast transient outward potassium channels (Itof) α-subunits Kv4.2, Kv4.3 and KChIP2 were analyzed by Western-blot. The fast transient outward potassium current and the action potentials were recorded in isolated myocytes by the whole-cell patch-clamp technique. Leptin treatment induced an up-regulation of Kv4.2, Kv4.3 and KChIP2 subunits mRNA expression. However, transcriptional levels of Kir2.1, Cav1.2, or Cav3.1 α-subunit channels were unmodified by leptin. Protein expression levels of Kv4.2, Kv4.3 and KChIP2 subunits were also increased by leptin. The electrophysiological study showed that leptin increases the fast transient outward potassium current amplitudes and densities shortening action potential duration. In addition, leptin activated Akt signaling in cardiomyocytes and this mechanism was involved in the effect of leptin on Itof channels. In conclusión, leptin increases both the expression and function of Itof channels in adult ventricular myocytes and this mechanism involves Akt signaling. Altogether these data suggest that leptin could exert beneficial or detrimental effects depending on the initial ventricular myocyte repolarizing reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abe Y, Ono K, Kawamura T, Wada H, Kita T, Shimatsu A, Hasegawa K (2007) Leptin induces elongation of cardiac myocytes and causes eccentric left ventricular dilatation with compensation. Am J Physiol Heart Circ Physiol 292:H2387–H2396. doi:10.1152/ajpheart.00579.2006

    Article  PubMed  CAS  Google Scholar 

  2. Abel ED, Litwin SE, Sweeney G (2008) Cardiac remodeling in obesity. Physiol Rev 88:389–419, 10.1152/physrev.00017.2007

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Aiba T, Tomaselli GF (2010) Electrical remodeling in the failing heart. Curr Opin Cardiol 25:29–36. doi:10.1097/HCO.0b013e328333d3d6

    Article  PubMed Central  PubMed  Google Scholar 

  4. Andjelković M, Jakubowicz T, Cron P, Ming XF, Han JW, Hemmings BA (1996) Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci U S A 93:5699–5704

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ashrafian H, Athanasiou T, le Roux CW (2011) Heart remodelling and obesity: the complexities and variation of cardiac geometry. Heart 97:171–172. doi:10.1136/hrt.2010.207092

    Article  PubMed  Google Scholar 

  6. Bassani RA (2006) Transient outward potassium current and Ca2+ homeostasis in the heart: beyond the action potential. Braz J Med Biol Res 39:393–403

    Article  PubMed  CAS  Google Scholar 

  7. Bénitah JP, Gomez AM, Bailly P, Da Ponte JP, Berson G, Delgado C, Lorente P (1993) Heterogeneity of the early outward current in ventricular cells isolated from normal and hypertrophied rat hearts. J Physiol 469:111–138

    PubMed Central  PubMed  Google Scholar 

  8. Bénitah JP, Perrier E, Gómez AM, Vassort G (2001) Effects of aldosterone on transient outward K + current density in rat ventricular myocytes. J Physiol 537:151–160

    Article  PubMed Central  PubMed  Google Scholar 

  9. Berndt N, Yang H, Trinczek B, Betzi S, Zhang Z, Wu B, Lawrence NJ, Pellecchia M, Schönbrunn E, Cheng JQ, Sebti SM (2010) The Akt activation inhibitor TCN-P inhibits Akt phosphorylation by binding to the PH domain of Akt and blocking its recruitment to the plasma membrane. Cell Death Differ 17:1795–1804, 10.1038/cdd.2010.63

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Beuckelmann DJ, Näbauer M, Erdmann E (1993) Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 73:379–385

    Article  PubMed  CAS  Google Scholar 

  11. Brognard J, Sierecki E, Gao T, Newton AC (2007) PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 25:917–931. doi:10.1016/j.molcel.2007.02.017

    Article  PubMed  CAS  Google Scholar 

  12. Casis O, Gallego M, Iriarte M, Sánchez-Chapula JA (2000) Effects of diabetic cardiomyopathy on regional electrophysiologic characteristics of rat ventricle. Diabetologia 43:101–109. doi:10.1007/s001250050013

    Article  PubMed  CAS  Google Scholar 

  13. de Simone G, Devereux RB, Roman MJ, Alderman MH, Laragh JH (1994) Relation of obesity and gender to left ventricular hypertrophy in normotensive and hypertensive adults. Hypertension 23:600–606

    Article  PubMed  Google Scholar 

  14. Enriori PJ, Evans AE, Sinnayah P, Cowley MA (2006) Leptin resistance and obesity. Obesity (Silver Spring) 14(Suppl 5):254S–258S. doi:10.1038/oby.2006.319

    Article  CAS  Google Scholar 

  15. Fernandez-Velasco M, Ruiz-Hurtado G, Hurtado O, Moro MA, Delgado C (2007) TNF-alpha downregulates transient outward potassium current in rat ventricular myocytes through iNOS overexpression and oxidant species generation. Am J Physiol Heart Circ Physiol 293:H238–H245. doi:10.1152/ajpheart.01122.2006

    Article  PubMed  CAS  Google Scholar 

  16. Frame S, Cohen P (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359:1–16

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770. doi:10.1038/27376

    Article  PubMed  CAS  Google Scholar 

  18. Gómez AM, Benitah JP, Henzel D, Vinet A, Lorente P, Delgado C (1997) Modulation of electrical heterogeneity by compensated hypertrophy in rat left ventricle. Am J Physiol 272:H1078–H1086

    PubMed  Google Scholar 

  19. Gong N, Bodi I, Zobel C, Schwartz A, Molkentin JD, Backx PH (2006) Calcineurin increases cardiac transient outward K + currents via transcriptional up-regulation of Kv4.2 channel subunits. J Biol Chem 281:38498–38506. doi:10.1074/jbc.M607774200

    Article  PubMed  CAS  Google Scholar 

  20. Guzmán-Ruiz R, Somoza B, Gil-Ortega M, Merino B, Cano V, Attané C, Castan-Laurell I, Valet P, Fernández-Alfonso MS, Ruiz-Gayo M (2010) Sensitivity of cardiac carnitine palmitoyltransferase to malonyl-CoA is regulated by leptin: similarities with a model of endogenous hyperleptinemia. Endocrinology 151:1010–1018. doi:10.1210/en.2009-1170

    Article  PubMed  CAS  Google Scholar 

  21. Huang B, Qin D, Deng L, Boutjdir M, El-Sherif N (2000) Reexpression of T-type Ca2+ channel gene and current in post-infarction remodeled rat left ventricle. Cardiovasc Res 46:442–449

    Article  PubMed  CAS  Google Scholar 

  22. Hughes V (2013) The big fat truth. Nature 497:428–430. doi:10.1038/497428a

    PubMed  CAS  Google Scholar 

  23. Kääb S, Dixon J, Duc J, Ashen D, Näbauer M, Beuckelmann DJ, Steinbeck G, McKinnon D, Tomaselli GF (1998) Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98:1383–1393

    Article  PubMed  Google Scholar 

  24. Kääb S, Nuss HB, Chiamvimonvat N, O’Rourke B, Pak PH, Kass DA, Marban E, Tomaselli GF (1996) Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res 78:262–273

    Article  PubMed  Google Scholar 

  25. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, Kannel WB, Vasan RS (2002) Obesity and the risk of heart failure. N Engl J Med 347:305–313. doi:10.1056/NEJMoa020245

    Article  PubMed  Google Scholar 

  26. Li GR, Lau CP, Ducharme A, Tardif JC, Nattel S (2002) Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. Am J Physiol Heart Circ Physiol 283:H1031–H1041. doi:10.1152/ajpheart.00105.2002

    PubMed  CAS  Google Scholar 

  27. Li X, Xu Z, Li S, Rozanski GJ (2005) Redox regulation of I to remodeling in diabetic rat heart. Am J Physiol Heart Circ Physiol 288:H1417–H1424. doi:10.1152/ajpheart.00559.2004

    Article  PubMed  CAS  Google Scholar 

  28. Martínez ML, Heredia MP, Delgado C (1999) Expression of T-type Ca(2+) channels in ventricular cells from hypertrophied rat hearts. J Mol Cell Cardiol 31:1617–1625. doi:10.1006/jmcc.1999.0998

    Article  PubMed  Google Scholar 

  29. Matsui T, Li L, Wu JC, Cook SA, Nagoshi T, Picard MH, Liao R, Rosenzweig A (2002) Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem 277:22896–22901. doi:10.1074/jbc.M200347200

    Article  PubMed  CAS  Google Scholar 

  30. Matsui T, Rosenzweig A (2005) Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. J Mol Cell Cardiol 38:63–71. doi:10.1016/j.yjmcc.2004.11.005

    Article  PubMed  CAS  Google Scholar 

  31. McMullen JR, Amirahmadi F, Woodcock EA, Schinke-Braun M, Bouwman RD, Hewitt KA, Mollica JP, Zhang L, Zhang Y, Shioi T, Buerger A, Izumo S, Jay PY, Jennings GL (2007) Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc Natl Acad Sci U S A 104:612–617. doi:10.1073/pnas.0606663104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Mewes T, Ravens U (1994) L-type calcium currents of human myocytes from ventricle of non-failing and failing hearts and from atrium. J Mol Cell Cardiol 26:1307–1320. doi:10.1006/jmcc.1994.1149

    Article  PubMed  CAS  Google Scholar 

  33. Mukherjee R, Hewett KW, Walker JD, Basler CG, Spinale FG (1998) Changes in L-type calcium channel abundance and function during the transition to pacing-induced congestive heart failure. Cardiovasc Res 37:432–444

    Article  PubMed  CAS  Google Scholar 

  34. Nattel S, Maguy A, Le Bouter S, Yeh YH (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87:425–456. doi:10.1152/physrev.00014.2006

    Article  PubMed  CAS  Google Scholar 

  35. Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85:1205–1253. doi:10.1152/physrev.00002.2005

    Article  PubMed  CAS  Google Scholar 

  36. Oreopoulos A, Padwal R, Kalantar-Zadeh K, Fonarow GC, Norris CM, McAlister FA (2008) Body mass index and mortality in heart failure: a meta-analysis. Am Heart J 156:13–22. doi:10.1016/j.ahj.2008.02.014

    Article  PubMed  Google Scholar 

  37. Ouadid H, Albat B, Nargeot J (1995) Calcium currents in diseased human cardiac cells. J Cardiovasc Pharmacol 25:282–291

    Article  PubMed  CAS  Google Scholar 

  38. Perego L, Pizzocri P, Corradi D, Maisano F, Paganelli M, Fiorina P, Barbieri M, Morabito A, Paolisso G, Folli F, Pontiroli AE (2005) Circulating leptin correlates with left ventricular mass in morbid (grade III) obesity before and after weight loss induced by bariatric surgery: a potential role for leptin in mediating human left ventricular hypertrophy. J Clin Endocrinol Metab 90:4087–4093. doi:10.1210/jc.2004-1963

    Article  PubMed  CAS  Google Scholar 

  39. Philip-Couderc P, Tavares NI, Roatti A, Lerch R, Montessuit C, Baertschi AJ (2008) Forkhead transcription factors coordinate expression of myocardial KATP channel subunits and energy metabolism. Circ Res 102:e20–e35. doi:10.1161/CIRCRESAHA.107.166744

    Article  PubMed  CAS  Google Scholar 

  40. Pitt GS, Dun W, Boyden PA (2006) Remodeled cardiac calcium channels. J Mol Cell Cardiol 41:373–388. doi:10.1016/j.yjmcc.2006.06.071

    Article  PubMed  CAS  Google Scholar 

  41. Purdham DM, Zou MX, Rajapurohitam V, Karmazyn M (2004) Rat heart is a site of leptin production and action. Am J Physiol Heart Circ Physiol 287:H2877–H2884. doi:10.1152/ajpheart.00499.2004

    Article  PubMed  CAS  Google Scholar 

  42. Ren J (2004) Leptin and hyperleptinemia—from friend to foe for cardiovascular function. J Endocrinol 181:1–10

    Article  PubMed  CAS  Google Scholar 

  43. Rider OJ, Petersen SE, Francis JM, Ali MK, Hudsmith LE, Robinson MR, Clarke K, Neubauer S (2011) Ventricular hypertrophy and cavity dilatation in relation to body mass index in women with uncomplicated obesity. Heart 97:203–208. doi:10.1136/hrt.2009.185009

    Article  PubMed  Google Scholar 

  44. Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG, Mookadam F, Lopez-Jimenez F (2006) Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies. Lancet 368:666–678. doi:10.1016/S0140-6736(06)69251-9

    Article  PubMed  Google Scholar 

  45. Ruiz-Hurtado G, Gomez-Hurtado N, Fernandez-Velasco M, Calderon E, Smani T, Ordonez A, Cachofeiro V, Bosca L, Diez J, Gomez AM, Delgado C (2012) Cardiotrophin-1 induces sarcoplasmic reticulum Ca-2 leak and arrhythmogenesis in adult rat ventricular myocytes. Cardiovasc Res 96:81–89. doi:10.1093/cvr/cvs234

    Article  PubMed  CAS  Google Scholar 

  46. Ruiz-Hurtado G, Gómez-Hurtado N, Fernández-Velasco M, Calderón E, Smani T, Ordoñez A, Cachofeiro V, Boscá L, Díez J, Gómez AM, Delgado C (2012) Cardiotrophin-1 induces sarcoplasmic reticulum Ca2+ leak and arrhythmogenesis in adult rat ventricular myocytes. Cardiovasc Res 96:81–89, 10.1093/cvr/cvs234

    Article  PubMed  CAS  Google Scholar 

  47. Sah R, Ramirez RJ, Oudit GY, Gidrewicz D, Trivieri MG, Zobel C, Backx PH (2003) Regulation of cardiac excitation–contraction coupling by action potential repolarization: role of the transient outward potassium current (I(to)). J Physiol 546:5–18

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, Cantley LC, Izumo S (2000) The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J 19:2537–2548. doi:10.1093/emboj/19.11.2537

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Smith CC, Mocanu MM, Davidson SM, Wynne AM, Simpkin JC, Yellon DM (2006) Leptin, the obesity-associated hormone, exhibits direct cardioprotective effects. Br J Pharmacol 149:5–13. doi:10.1038/sj.bjp.0706834

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Soliman AT, Omar M, Assem HM, Nasr IS, Rizk MM, El Matary W, El Alaily RK (2002) Serum leptin concentrations in children with type 1 diabetes mellitus: relationship to body mass index, insulin dose, and glycemic control. Metabolism 51:292–296

    Article  PubMed  CAS  Google Scholar 

  51. Stucchi P, Guzmán-Ruiz R, Gil-Ortega M, Merino B, Somoza B, Cano V, de Castro J, Sevillano J, Ramos MP, Fernández-Alfonso MS, Ruiz-Gayo M (2011) Leptin resistance develops spontaneously in mice during adult life in a tissue-specific manner. Consequences for hepatic steatosis. Biochimie 93:1779–1785. doi:10.1016/j.biochi.2011.06.020

    Article  PubMed  CAS  Google Scholar 

  52. Sweeney G (2010) Cardiovascular effects of leptin. Nat Rev Cardiol 7:22–29. doi:10.1038/nrcardio.2009.224

    Article  PubMed  CAS  Google Scholar 

  53. Van Der Heide LP, Hoekman MF, Smidt MP (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380:297–309. doi:10.1042/BJ20040167

    Article  Google Scholar 

  54. Wang Y, Hill JA (2010) Electrophysiological remodeling in heart failure. J Mol Cell Cardiol 48:619–632. doi:10.1016/j.yjmcc.2010.01.009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Wannamethee SG, Shaper AG, Whincup PH, Lennon L, Sattar N (2011) Obesity and risk of incident heart failure in older men with and without pre-existing coronary heart disease: does leptin have a role? J Am Coll Cardiol 58:1870–1877. doi:10.1016/j.jacc.2011.06.057

    Article  PubMed  CAS  Google Scholar 

  56. Yang R, Barouch LA (2007) Leptin signaling and obesity: cardiovascular consequences. Circ Res 101:545–559. doi:10.1161/CIRCRESAHA.107.156596

    Article  PubMed  CAS  Google Scholar 

  57. Yang KC, Foeger NC, Marionneau C, Jay PY, McMullen JR, Nerbonne JM (2010) Homeostatic regulation of electrical excitability in physiological cardiac hypertrophy. J Physiol 588:5015–5032. doi:10.1113/jphysiol.2010.197418

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Yang KC, Jay PY, McMullen JR, Nerbonne JM (2012) Enhanced cardiac PI3Kα signalling mitigates arrhythmogenic electrical remodelling in pathological hypertrophy and heart failure. Cardiovasc Res 93:252–262. doi:10.1093/cvr/cvr283

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Yang KC, Tseng YT, Nerbonne JM (2012) Exercise training and PI3Kα-induced electrical remodeling is independent of cellular hypertrophy and Akt signaling. J Mol Cell Cardiol 53:532–541. doi:10.1016/j.yjmcc.2012.07.004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Yao JJ, Gao XF, Chow CW, Zhan XQ, Hu CL, Mei YA (2012) Neuritin activates insulin receptor pathway to up-regulate Kv4.2-mediated transient outward K + current in rat cerebellar granule neurons. J Biol Chem 287:41534–41545. doi:10.1074/jbc.M112.390260

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Yao JJ, Sun J, Zhao QR, Wang CY, Mei YA (2013) Neuregulin-1 /ErbB4 signaling regulates Kv4.2-mediated transient outward K + current through the Akt/mTOR pathway. Am J Physiol Cell Physiol 304(12):H1651–H1661. doi:10.1152/ajpcell.00041.2013

    Article  CAS  Google Scholar 

  62. Zeidan A, Hunter JC, Javadov S, Karmazyn M (2011) mTOR mediates RhoA-dependent leptin-induced cardiomyocyte hypertrophy. Mol Cell Biochem 352:99–108. doi:10.1007/s11010-011-0744-2

    Article  PubMed  CAS  Google Scholar 

  63. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432. doi:10.1038/372425a0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Manuel Bas for expert technical assistance.

Sources of funding

This work was supported by MICINN (SAF2010-16377), RIC (Red de Investigación Cardiovascular; RD12/0042/0019), Mutua Madrileña (FMM2010), and Instituto de Salud Carlos III (ISCIII; CP11/0080). N.G.H. is a predoctoral fellow of the Spanish Ministry of Education.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Delgado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Hurtado, N., Fernández-Velasco, M., Fernández-Alfonso, M.S. et al. Prolonged leptin treatment increases transient outward K+ current via upregulation of Kv4.2 and Kv4.3 channel subunits in adult rat ventricular myocytes. Pflugers Arch - Eur J Physiol 466, 903–914 (2014). https://doi.org/10.1007/s00424-013-1348-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1348-3

Keywords

Navigation