Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 465, Issue 12, pp 1701–1714 | Cite as

Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter

  • Carolien M. S. Schophuizen
  • Martijn J. Wilmer
  • Jitske Jansen
  • Lena Gustavsson
  • Constanze Hilgendorf
  • Joost G. J. Hoenderop
  • Lambert P. van den Heuvel
  • Rosalinde MasereeuwEmail author
Ion channels, receptors and transporters

Abstract

Several organic cations, such as guanidino compounds and polyamines, have been found to accumulate in plasma of patients with kidney failure due to inadequate renal clearance. Here, we studied the interaction of cationic uremic toxins with renal organic cation transport in a conditionally immortalized human proximal tubule epithelial cell line (ciPTEC). Transporter activity was measured and validated in cell suspensions by studying uptake of the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP+). Subsequently, the inhibitory potencies of the cationic uremic toxins, cadaverine, putrescine, spermine and spermidine (polyamines), acrolein (polyamine breakdown product), guanidine, and methylguanidine (guanidino compounds) were determined. Concentration-dependent inhibition of ASP+ uptake by TPA, cimetidine, quinidine, and metformin confirmed functional endogenous organic cation transporter 2 (OCT2) expression in ciPTEC. All uremic toxins tested inhibited ASP+ uptake, of which acrolein required the lowest concentration to provoke a half-maximal inhibition (IC50 = 44 ± 2 μM). A Dixon plot was constructed for acrolein using three independent inhibition curves with 10, 20, or 30 μM ASP+, which demonstrated competitive or mixed type of interaction (K i = 93 ± 16 μM). Exposing the cells to a mixture of cationic uremic toxins resulted in a more potent and biphasic inhibitory response curve, indicating complex interactions between the toxins and ASP+ uptake. In conclusion, ciPTEC proves a suitable model to study cationic xenobiotic interactions. Inhibition of cellular uptake transport was demonstrated for several uremic toxins, which might indicate a possible role in kidney disease progression during uremia.

Keywords

Human proximal tubule cell OCT Uremic toxin Polyamines Guanidine Acrolein 

Abbreviations

ASP+

4-(4-(Dimethylamino)styryl)-N-methylpyridinium-iodide

ciPTEC

Conditionally immortalized proximal tubule epithelial cells

CKD

Chronic kidney disease

DMEM

Dulbecco's modified eagle medium

ESRD

End-stage renal disease

FCS

Fetal calf serum

IC50

Half-maximal inhibitory concentration

MATE

Multidrug and toxic compound extrusion protein

MTT

(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

OCT

Organic cation transporter

RLU

Relative light units

TPA

Tetrapentylammonium

Notes

Acknowledgment

This work was supported by the BioMedical Materials Institute (BMM, Project P3.01 BioKid); the Dutch Ministry of Economic Affairs, Agriculture and Innovation; the Nierstichting Nederland; and the Netherlands Institute for Regenerative Medicine (NIRM, grant no. FES0908). M.J.G. Wilmer and R. Masereeuw were supported by a collaboration research grant from AstraZeneca (grant no. A10-0324). J. Hoenderop was supported by an EURYI award.

Ethical standards

The experiments described in this article comply with the current laws of the country in which they were performed (the Netherlands).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

424_2013_1307_Fig9_ESM.gif (7 kb)

Online Resource 1 OCT-mediated ASP+ uptake by mature ciPTEC analyzed by measuring the fluorescence of transported ASP+ in the absence (white bar) or presence (gray bar) of OCT2 inhibitor tetrapentylammonium (TPA). Additionally, uptake was performed at 4 °C (black bar). Uptake was significantly decreased in ciPTEC in the presence of TPA or at 4 °C (**P < 0.001). Results are shown as mean values ± SEM of three experiments (GIF 7 kb)

424_2013_1307_MOESM1_ESM.tif (285 kb)
High resolution image (TIFF 285 kb)
424_2013_1307_Fig10_ESM.gif (10 kb)

Online Resource 2 Time dependence of ASP+ uptake. OCT-mediated ASP+ uptake by ciPTEC analyzed by measuring the fluorescence of transported ASP+ for 60 min. Uptake was found to be linear for at least 60 min. Results are shown as mean values ± SEM of three experiments (GIF 10 kb)

424_2013_1307_MOESM2_ESM.tif (328 kb)
High resolution image (TIFF 327 kb)

References

  1. 1.
    Ahlin G, Hilgendorf C, Karlsson J, Szigyarto CA, Uhlen M, Artursson P (2009) Endogenous gene and protein expression of drug-transporting proteins in cell lines routinely used in drug discovery programs. Drug Metab Dispos 37:2275–2283. doi: 10.1124/dmd.109.028654 PubMedCrossRefGoogle Scholar
  2. 2.
    Astorga B, Ekins S, Morales M, Wright SH (2012) Molecular determinants of ligand selectivity for the human multidrug and toxin extruder proteins mate1 and mate2-k. J Pharmacol Exp Ther 341:743–755. doi: 10.1124/jpet.112.191577 PubMedCrossRefGoogle Scholar
  3. 3.
    Ciarimboli G, Ludwig T, Lang D, Pavenstadt H, Koepsell H, Piechota HJ, Haier J, Jaehde U, Zisowsky J, Schlatter E (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167:1477–1484. doi: 10.1016/S0002-9440(10)61234-5 PubMedCrossRefGoogle Scholar
  4. 4.
    D'Hooge R, De Deyn PP, Van de Vijver G, Antoons G, Raes A, Van Bogaert PP (1999) Uraemic guanidino compounds inhibit gamma-aminobutyric acid-evoked whole cell currents in mouse spinal cord neurones. Neurosci Lett 265:83–86. doi: 10.1016/S0304-3940(99)00190-1 PubMedCrossRefGoogle Scholar
  5. 5.
    De Deyn PP, Robitaille P, Vanasse M, Qureshi IA, Marescau B (1995) Serum guanidino compound levels in uremic pediatric patients treated with hemodialysis or continuous cycle peritoneal dialysis. Correlations between nerve conduction velocities and altered guanidino compound concentrations. Nephrol 69:411–417. doi: 10.1159/000188511 Google Scholar
  6. 6.
    Dhondt A, Vanholder R, Van Biesen W, Lameire N (2000) The removal of uremic toxins. Kidney Int Suppl 76:S47–S59. doi: 10.1046/j.1523-1755.2000.07606.x PubMedCrossRefGoogle Scholar
  7. 7.
    Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, Argiles A (2012) Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol 23:1258–1270. doi: 10.1681/ASN.2011121175 PubMedCrossRefGoogle Scholar
  8. 8.
    Eloot S, van Biesen W, Dhondt A, de Smet R, Marescau B, De Deyn PP, Verdonck P, Vanholder R (2009) Impact of increasing haemodialysis frequency versus haemodialysis duration on removal of urea and guanidino compounds: a kinetic analysis. Nephrol Dial Transplant 24:2225–2232. doi: 10.1093/ndt/gfp059 PubMedCrossRefGoogle Scholar
  9. 9.
    Fujita T, Urban TJ, Leabman MK, Fujita K, Giacomini KM (2006) Transport of drugs in the kidney by the human organic cation transporter, oct2 and its genetic variants. J Pharm Sci 95:25–36. doi: 10.1002/jps.20536 PubMedCrossRefGoogle Scholar
  10. 10.
    Giovannetti S, Cioni L, Balestri PL, Biagnini M (1968) Evidence that guanidines and some related compounds cause haemolysis in chronic uraemia. Clin Sci 34:141–148http://www.ncbi.nlm.nih.gov/pubmed/5640680 Google Scholar
  11. 11.
    Glorieux GL, Dhondt AW, Jacobs P, Van Langeraert J, Lameire NH, De Deyn PP, Vanholder RC (2004) In vitro study of the potential role of guanidines in leukocyte functions related to atherogenesis and infection. Kidney Int 65:2184–2192. doi: 10.1111/j.1523-1755.2004.00631.x PubMedCrossRefGoogle Scholar
  12. 12.
    Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, Baumann C, Lang F, Busch AE, Koepsell H (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16:871–881. doi: 10.1089/dna.1997.16.871 PubMedCrossRefGoogle Scholar
  13. 13.
    Hosoya K, Tachikawa M (2011) Roles of organic anion/cation transporters at the blood–brain and blood–cerebrospinal fluid barriers involving uremic toxins. Clin Exp Nephrol 15:478–485. doi: 10.1007/s10157-011-0460-y PubMedCrossRefGoogle Scholar
  14. 14.
    Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51. doi: 10.1016/j.biocel.2009.07.009 PubMedCrossRefGoogle Scholar
  15. 15.
    Igarashi K, Ueda S, Yoshida K, Kashiwagi K (2006) Polyamines in renal failure. Amino Acids 31:477–483. doi: 10.1007/s00726-006-0264-7 PubMedCrossRefGoogle Scholar
  16. 16.
    Jenkinson SE, Chung GW, van Loon E, Bakar NS, Dalzell AM, Brown CD (2012) The limitations of renal epithelial cell line hk-2 as a model of drug transporter expression and function in the proximal tubule. Pflugers Arch 464:601–611. doi: 10.1007/s00424-012-1163-2 PubMedCrossRefGoogle Scholar
  17. 17.
    Kimura N, Masuda S, Katsura T, Inui K (2009) Transport of guanidine compounds by human organic cation transporters, hoct1 and hoct2. Biochem Pharmacol 77:1429–1436. doi: 10.1016/j.bcp.2009.01.010 PubMedCrossRefGoogle Scholar
  18. 18.
    Kimura N, Okuda M, Inui K (2005) Metformin transport by renal basolateral organic cation transporter hoct2. Pharm Res 22:255–259. doi: 10.1007/s11095-004-1193-3 PubMedCrossRefGoogle Scholar
  19. 19.
    Krieter DH, Hackl A, Rodriguez A, Chenine L, Moragues HL, Lemke HD, Wanner C, Canaud B (2010) Protein-bound uraemic toxin removal in haemodialysis and post-dilution haemodiafiltration. Nephrol Dial Transplant 25:212–218. doi: 10.1093/ndt/gfp437 PubMedCrossRefGoogle Scholar
  20. 20.
    Kushner D, Beckman B, Nguyen L, Chen S, Della Santina C, Husserl F, Rice J, Fisher JW (1991) Polyamines in the anemia of end-stage renal disease. Kidney Int 39:725–732. doi: 10.1038/ki.1991.88 PubMedCrossRefGoogle Scholar
  21. 21.
    Lumen AA, Acharya P, Polli JW, Ayrton A, Ellens H, Bentz J (2010) If the KI is defined by the free energy of binding to P-glycoprotein, which kinetic parameters define the IC50 for the Madin–Darby canine kidney II cell line overexpressing human multidrug resistance 1 confluent cell monolayer? Drug Metab Dispos 38:260–269. doi: 10.1124/dmd.109.029843 PubMedCrossRefGoogle Scholar
  22. 22.
    MacAllister RJ, Whitley GS, Vallance P (1994) Effects of guanidino and uremic compounds on nitric oxide pathways. Kidney Int 45:737–742. doi: 10.1038/ki.1994.98 PubMedCrossRefGoogle Scholar
  23. 23.
    Meyer TW, Hostetter TH (2007) Uremia. N Engl J Med 357:1316–1325. doi: 10.1056/NEJMra071313 PubMedCrossRefGoogle Scholar
  24. 24.
    Meyer TW, Walther JL, Pagtalunan ME, Martinez AW, Torkamani A, Fong PD, Recht NS, Robertson CR, Hostetter TH (2005) The clearance of protein-bound solutes by hemofiltration and hemodiafiltration. Kidney Int 68:867–877. doi: 10.1111/j.1523-1755.2005.00469.x PubMedCrossRefGoogle Scholar
  25. 25.
    Momper JD, Venkataramanan R, Nolin TD (2010) Nonrenal drug clearance in CKD: searching for the path less traveled. Adv Chronic Kidney Dis 17:384–391. doi: 10.1053/j.ackd.2010.05.009 PubMedCrossRefGoogle Scholar
  26. 26.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63http://www.ncbi.nlm.nih.gov/pubmed/6606682
  27. 27.
    Motohashi H, Uwai Y, Hiramoto K, Okuda M, Inui K (2004) Different transport properties between famotidine and cimetidine by human renal organic ion transporters (slc22a). Eur J Pharmacol 503:25–30. doi: 10.1016/j.ejphar.2004.09.032 PubMedCrossRefGoogle Scholar
  28. 28.
    Nies AT, Koepsell H, Damme K, Schwab M (2011) Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol:105–167. doi: 10.1007/978-3-642-14541-4_3
  29. 29.
    Niwa T (2010) Uremic toxicity of indoxyl sulfate. Nagoya J Med Sci 72:1–11. doi: 10.1159/000057433 PubMedGoogle Scholar
  30. 30.
    Nolin TD (2008) Altered nonrenal drug clearance in ESRD. Curr Opin Nephrol Hypertens 17:555–559. doi: 10.1097/MNH.0b013e3283136732 PubMedCrossRefGoogle Scholar
  31. 31.
    Radtke HW, Rege AB, LaMarche MB, Bartos D, Bartos F, Campbell RA, Fisher JW (1981) Identification of spermine as an inhibitor of erythropoiesis in patients with chronic renal failure. J Clin Invest 67:1623–1629. doi: 10.1172/JCI110197 PubMedCrossRefGoogle Scholar
  32. 32.
    Reidenberg MM, Drayer DE (1984) Alteration of drug–protein binding in renal disease. Clin Pharmacokinet 9(Suppl 1):18–26. doi: 10.2165/00003088-198400091-00003 PubMedCrossRefGoogle Scholar
  33. 33.
    Rowland Yeo K, Aarabi M, Jamei M, Rostami-Hodjegan A (2011) Modeling and predicting drug pharmacokinetics in patients with renal impairment. Expert Rev Clin Pharmacol 4:261–274. doi: 10.1586/ecp.10.143 PubMedCrossRefGoogle Scholar
  34. 34.
    Sakata K, Kashiwagi K, Sharmin S, Ueda S, Igarashi K (2003) Acrolein produced from polyamines as one of the uraemic toxins. Biochem Soc Trans 31:371–374. doi: 10.1042/BST0310371 PubMedCrossRefGoogle Scholar
  35. 35.
    Sakata K, Kashiwagi K, Sharmin S, Ueda S, Irie Y, Murotani N, Igarashi K (2003) Increase in putrescine, amine oxidase, and acrolein in plasma of renal failure patients. Biochem Biophys Res Commun 305:143–149. doi: 10.1016/S0006-291x(03)00716-2 PubMedCrossRefGoogle Scholar
  36. 36.
    Schlatter E, Monnich V, Cetinkaya I, Mehrens T, Ciarimboli G, Hirsch JR, Popp C, Koepsell H (2002) The organic cation transporters rOCT1 and hOCT2 are inhibited by cGMP. J Membr Biol 189:237–244. doi: 10.1007/s00232-002-1023-7 PubMedCrossRefGoogle Scholar
  37. 37.
    Sharmin S, Sakata K, Kashiwagi K, Ueda S, Iwasaki S, Shirahata A, Igarashi K (2001) Polyamine cytotoxicity in the presence of bovine serum amine oxidase. Biochem Biophys Res Commun 282:228–235. doi: 10.1006/bbrc.2001.4569 PubMedCrossRefGoogle Scholar
  38. 38.
    Stabellini G, Mariani G, Pezzetti F, Calastrini C (1997) Direct inhibitory effect of uremic toxins and polyamines on proliferation of VERO culture cells. Exp Mol Pathol 64:147–155. doi: 10.1006/exmp.1997.2215 PubMedCrossRefGoogle Scholar
  39. 39.
    Sun H, Frassetto L, Benet LZ (2006) Effects of renal failure on drug transport and metabolism. Pharmacol Ther 109:1–11. doi: 10.1016/j.pharmthera.2005.05.010 PubMedCrossRefGoogle Scholar
  40. 40.
    Tadolini B, Hakim G, Orlandini G, Casti A (1986) Intracellular location of polyamines associated to red blood cells. Biochem Biophys Res Commun 134:1365–1371. doi: 10.1016/0006-291X(86)90400-6 PubMedCrossRefGoogle Scholar
  41. 41.
    Takagi T, Chung TG, Saito A (1983) Determination of polyamines in hydrolysates of uremic plasma by high-performance cation-exchange column chromatography. J Chromatogr 272:279–285, <Go to ISI>://A1983QE07100007PubMedCrossRefGoogle Scholar
  42. 42.
    Vanholder R, De Smet R (1999) Pathophysiologic effects of uremic retention solutes. J Am Soc Nephrol 10:1815–1823PubMedGoogle Scholar
  43. 43.
    Vanholder R, Van Landschoot N, De Smet R, Schoots A, Ringoir S (1988) Drug protein binding in chronic renal failure: evaluation of nine drugs. Kidney Int 33:996–1004. doi: 10.1038/ki.1988.99 PubMedCrossRefGoogle Scholar
  44. 44.
    Volk C, Gorboulev V, Budiman T, Nagel G, Koepsell H (2003) Different affinities of inhibitors to the outwardly and inwardly directed substrate binding site of organic cation transporter 2. Mol Pharmacol 64:1037–1047. doi: 10.1124/mol.64.5.1037 PubMedCrossRefGoogle Scholar
  45. 45.
    Wilde S, Schlatter E, Koepsell H, Edemir B, Reuter S, Pavenstadt H, Neugebauer U, Schroter R, Brast S, Ciarimboli G (2009) Calmodulin-associated post-translational regulation of rat organic cation transporter 2 in the kidney is gender dependent. Cell Mol Life Sci 66:1729–1740. doi: 10.1007/s00018-009-9145-z PubMedCrossRefGoogle Scholar
  46. 46.
    Wilmer MJ, Saleem MA, Masereeuw R, Ni L, van der Velden TJ, Russel FG, Mathieson PW, Monnens LA, van den Heuvel LP, Levtchenko EN (2010) Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters. Cell Tissue Res 339:449–457. doi: 10.1007/s00441-009-0882-y PubMedCrossRefGoogle Scholar
  47. 47.
    Winter TN, Elmquist WF, Fairbanks CA (2011) Oct2 and mate1 provide bidirectional agmatine transport. Mol Pharm 8:133–142. doi: 10.1021/mp100180a PubMedCrossRefGoogle Scholar
  48. 48.
    Zolk O, Solbach TF, Konig J, Fromm MF (2009) Structural determinants of inhibitor interaction with the human organic cation transporter oct2 (slc22a2). Naunyn Schmiedebergs Arch Pharmacol 379:337–348. doi: 10.1007/s00210-008-0369-5 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Carolien M. S. Schophuizen
    • 1
  • Martijn J. Wilmer
    • 2
  • Jitske Jansen
    • 2
    • 3
  • Lena Gustavsson
    • 4
  • Constanze Hilgendorf
    • 5
  • Joost G. J. Hoenderop
    • 3
  • Lambert P. van den Heuvel
    • 1
    • 6
  • Rosalinde Masereeuw
    • 2
    Email author
  1. 1.Department of Pediatric NephrologyRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  2. 2.Department of Pharmacology and Toxicology (149), Nijmegen Centre for Molecular Life Sciences/Institute for Genetic and Metabolic DiseaseRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  3. 3.Department of PhysiologyRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  4. 4.Department of Laboratory Medicine (Malmö)Lund University, Skåne University HospitalMalmöSweden
  5. 5.AstraZeneca R&D, Innovative Medicines, Global DMPKMölndalSweden
  6. 6.Department of PediatricsCatholic University LeuvenLeuvenBelgium

Personalised recommendations