A network perspective on unraveling the role of TRP channels in biology and disease

Abstract

Transient receptor potential (TRP) channels are a large family of non-selective cation channels that mediate numerous physiological and pathophysiological processes; however, still largely unknown are the underlying molecular mechanisms. With data generated on an unprecedented scale, network-based approaches have been revolutionizing the way in which we understand biology and disease, discover disease genes, and develop therapeutic strategies. These circumstances have created opportunities to encounter TRP channel research to data-intensive science. In this review, we provide an introduction of network-based approaches in biomedical science, describe the current state of TRP channel network biology, and discuss the future direction of TRP channel research. Network perspective will facilitate the discovery of latent roles and underlying mechanisms of TRP channels in biology and disease.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    PubMed  Google Scholar 

  2. 2.

    Bai CX, Giamarchi A, Rodat-Despoix L, Padilla F, Downs T, Tsiokas L, Delmas P (2008) Formation of a new receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep 9:472–479

    CAS  PubMed Central  PubMed  Google Scholar 

  3. 3.

    Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5:101–113

    CAS  PubMed  Google Scholar 

  4. 4.

    Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    CAS  PubMed Central  PubMed  Google Scholar 

  5. 5.

    Barga R, Howe B, Beck D, Bowers S, Dobyns W, Haynes W, Higdon R, Howard C, Roth C, Stewart E, Welch D, Kolker E (2011) Bioinformatics and data-intensive scientific discovery in the beginning of the 21st century. OMICS 15:199–201

    PubMed  Google Scholar 

  6. 6.

    Barrett IP (2010) Cancer genome analysis informatics. Methods Mol Biol 628:75–102

    CAS  PubMed  Google Scholar 

  7. 7.

    Bebek G, Koyuturk M, Price ND, Chance MR (2012) Network biology methods integrating biological data for translational science. Brief Bioinform 13:446–459

    PubMed  Google Scholar 

  8. 8.

    Bensimon A, Heck AJ, Aebersold R (2012) Mass spectrometry-based proteomics and network biology. Annu Rev Biochem 81:379–405

    CAS  PubMed  Google Scholar 

  9. 9.

    Beyer A, Bandyopadhyay S, Ideker T (2007) Integrating physical and genetic maps: from genomes to interaction networks. Nat Rev Genet 8:699–710

    CAS  PubMed Central  PubMed  Google Scholar 

  10. 10.

    Birney E (2012) The making of ENCODE: lessons for big-data projects. Nature 489:49–51

    CAS  PubMed  Google Scholar 

  11. 11.

    Bonetta L (2010) Protein–protein interactions: Interactome under construction. Nature 468:851–854

    CAS  PubMed  Google Scholar 

  12. 12.

    Boran AD, Iyengar R (2010) Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel 13:297–309

    CAS  PubMed Central  PubMed  Google Scholar 

  13. 13.

    Butte AJ, Kohane IS (2006) Creation and implications of a phenome–genome network. Nat Biotechnol 24:55–62

    CAS  PubMed Central  PubMed  Google Scholar 

  14. 14.

    Causier B (2004) Studying the interactome with the yeast two-hybrid system and mass spectrometry. Mass Spectrom Rev 23:350–367

    PubMed  Google Scholar 

  15. 15.

    Christakis NA, Fowler JH (2007) The spread of obesity in a large social network over 32 years. N Eng J Med 357:370–379

    CAS  Google Scholar 

  16. 16.

    Collins FS, Green ED, Guttmacher AE, Guyer MS (2003) A vision for the future of genomics research. Nature 422:835–847

    CAS  PubMed  Google Scholar 

  17. 17.

    Collins FS, Morgan M, Patrinos A (2003) The Human Genome Project: lessons from large-scale biology. Science 300:286–290

    CAS  PubMed  Google Scholar 

  18. 18.

    Curcio-Morelli C, Zhang P, Venugopal B, Charles FA, Browning MF, Cantiello HF, Slaugenhaupt SA (2010) Functional multimerization of mucolipin channel proteins. J Cell Physiol 222:328–335

    CAS  PubMed  Google Scholar 

  19. 19.

    da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    CAS  Google Scholar 

  20. 20.

    Dadon D, Minke B (2010) Cellular functions of transient receptor potential channels. Int J Biochem Cell Biol 42:1430–1445

    CAS  PubMed Central  PubMed  Google Scholar 

  21. 21.

    Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D'Eustachio P, Schaefer C, Luciano J, Schacherer F, Martinez-Flores I, Hu Z, Jimenez-Jacinto V, Joshi-Tope G, Kandasamy K, Lopez-Fuentes AC, Mi H, Pichler E, Rodchenkov I, Splendiani A, Tkachev S, Zucker J, Gopinath G, Rajasimha H, Ramakrishnan R, Shah I, Syed M, Anwar N, Babur O, Blinov M, Brauner E, Corwin D, Donaldson S, Gibbons F, Goldberg R, Hornbeck P, Luna A, Murray-Rust P, Neumann E, Ruebenacker O, Samwald M, van Iersel M, Wimalaratne S, Allen K, Braun B, Whirl-Carrillo M, Cheung KH, Dahlquist K, Finney A, Gillespie M, Glass E, Gong L, Haw R, Honig M, Hubaut O, Kane D, Krupa S, Kutmon M, Leonard J, Marks D, Merberg D, Petri V, Pico A, Ravenscroft D, Ren L, Shah N, Sunshine M, Tang R, Whaley R, Letovksy S, Buetow KH, Rzhetsky A, Schachter V, Sobral BS, Dogrusoz U, McWeeney S, Aladjem M, Birney E, Collado-Vides J, Goto S, Hucka M, Le Novere N, Maltsev N, Pandey A, Thomas P, Wingender E, Karp PD, Sander C, Bader GD (2010) The BioPAX community standard for pathway data sharing. Nature Biotechnol 28:935–942

    CAS  Google Scholar 

  22. 22.

    Doyle JC, Alderson DL, Li L, Low S, Roughan M, Shalunov S, Tanaka R, Willinger W (2005) The “robust yet fragile” nature of the Internet. Proc Natl Acad Sci U S A 102:14497–14502

    CAS  PubMed Central  PubMed  Google Scholar 

  23. 23.

    Du J, Wong WY, Sun L, Huang Y, Yao X (2012) Protein kinase G inhibits flow-induced Ca2+ entry into collecting duct cells. J Am Soc Neph 23:1172–1180

    CAS  Google Scholar 

  24. 24.

    Dudley JT, Sirota M, Shenoy M, Pai RK, Roedder S, Chiang AP, Morgan AA, Sarwal MM, Pasricha PJ, Butte AJ (2011) Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med 3:96ra76

    CAS  PubMed Central  PubMed  Google Scholar 

  25. 25.

    Edwards AM, Isserlin R, Bader GD, Frye SV, Willson TM, Yu FH (2011) Too many roads not taken. Nature 470:163–165

    CAS  PubMed  Google Scholar 

  26. 26.

    Fliri AF, Loging WT, Volkmann RA (2010) Cause–effect relationships in medicine: a protein network perspective. Trends Pharmacol Sci 31:547–555

    CAS  PubMed  Google Scholar 

  27. 27.

    Friedman N (2004) Inferring cellular networks using probabilistic graphical models. Science 303:799–805

    CAS  PubMed  Google Scholar 

  28. 28.

    Fuentes G, Oyarzabal J, Rojas AM (2009) Databases of protein–protein interactions and their use in drug discovery. Curr Opin Drug Discov Devel 12:358–366

    CAS  PubMed  Google Scholar 

  29. 29.

    Gat-Viks I, Tanay A, Shamir R (2004) Modeling and analysis of heterogeneous regulation in biological networks. J Comput Biol 11:1034–1049

    CAS  PubMed  Google Scholar 

  30. 30.

    Goel M, Sinkins W, Keightley A, Kinter M, Schilling WP (2005) Proteomic analysis of TRPC5- and TRPC6-binding partners reveals interaction with the plasmalemmal Na(+)/K(+)-ATPase. Pflugers Arch 451:87–98

    CAS  PubMed  Google Scholar 

  31. 31.

    Guan H, Kiss-Toth E (2008) Advanced technologies for studies on protein interactomes. Adv Biochem Eng Biotechnol 110:1–24

    CAS  PubMed  Google Scholar 

  32. 32.

    Haider S, Ballester B, Smedley D, Zhang J, Rice P, Kasprzyk A (2009) BioMart Central Portal—unified access to biological data. Nucleic Acids Res 37:W23–W27

    CAS  PubMed Central  PubMed  Google Scholar 

  33. 33.

    Hamid JS, Hu P, Roslin NM, Ling V, Greenwood CM, Beyene J (2009) Data integration in genetics and genomics: methods and challenges. Hum Genomics Proteomics 2009:869093

    PubMed Central  PubMed  Google Scholar 

  34. 34.

    Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430:88–93

    CAS  PubMed  Google Scholar 

  35. 35.

    Hasan S, Bonde BK, Buchan NS, Hall MD (2012) Network analysis has diverse roles in drug discovery. Drug Discov Today 17:869–874

    PubMed  Google Scholar 

  36. 36.

    Hede K (2008) Superhighway or blind alley? The cancer genome atlas releases first results. J Natl Cancer Inst 100:1566–1569

    PubMed  Google Scholar 

  37. 37.

    Hoenderop JG, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, Bindels RJ (2003) Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 22:776–785

    CAS  PubMed  Google Scholar 

  38. 38.

    Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    CAS  PubMed  Google Scholar 

  39. 39.

    Hwang D, Smith JJ, Leslie DM, Weston AD, Rust AG, Ramsey S, de Atauri P, Siegel AF, Bolouri H, Aitchison JD, Hood L (2005) A data integration methodology for systems biology: experimental verification. Proc Natl Acad Sci U S A 102:17302–17307

    CAS  PubMed Central  PubMed  Google Scholar 

  40. 40.

    Keith CT, Borisy AA, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4:71–78

    CAS  PubMed  Google Scholar 

  41. 41.

    Kim LC, Song L, Haura EB (2009) Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 6:587–595

    PubMed  Google Scholar 

  42. 42.

    Kiran M, Coakley S, Walkinshaw N, McMinn P, Holcombe M (2008) Validation and discovery from computational biology models. Bio Systems 93:141–150

    PubMed  Google Scholar 

  43. 43.

    Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837

    CAS  PubMed  Google Scholar 

  44. 44.

    Klingstrom T, Plewczynski D (2011) Protein–protein interaction and pathway databases, a graphical review. Brief Bioinform 12:702–713

    PubMed  Google Scholar 

  45. 45.

    Kolker E, Stewart E, Ozdemir V (2012) Opportunities and challenges for the life sciences community. OMICS 16:138–147

    CAS  PubMed  Google Scholar 

  46. 46.

    Krohs U (2012) Convenience experimentation. Stud Hist Philos Biol Biomed Sci 43:52–57

    PubMed  Google Scholar 

  47. 47.

    Laland KN, Sterelny K, Odling-Smee J, Hoppitt W, Uller T (2011) Cause and effect in biology revisited: is Mayr’s proximate–ultimate dichotomy still useful? Science 334:1512–1516

    CAS  PubMed  Google Scholar 

  48. 48.

    Larranaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, Lozano JA, Armananzas R, Santafe G, Perez A, Robles V (2006) Machine learning in bioinformatics. Brief Bioinform 7:86–112

    CAS  PubMed  Google Scholar 

  49. 49.

    Lehen'kyi V, Prevarskaya N (2011) Oncogenic TRP channels. Adv Exp Med Biol 704:929–945

    PubMed  Google Scholar 

  50. 50.

    Leonelli S (2012) Introduction: making sense of data-driven research in the biological and biomedical sciences. Stud Hist Philos Biol Biomed Sci 43:1–3

    CAS  PubMed  Google Scholar 

  51. 51.

    Lintschinger B, Balzer-Geldsetzer M, Baskaran T, Graier WF, Romanin C, Zhu MX, Groschner K (2000) Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J Biol Chem 275:27799–27805

    CAS  PubMed  Google Scholar 

  52. 52.

    Lockwich T, Pant J, Makusky A, Jankowska-Stephens E, Kowalak JA, Markey SP, Ambudkar IS (2008) Analysis of TRPC3-interacting proteins by tandem mass spectrometry. J Proteome Res 7:979–989

    CAS  PubMed  Google Scholar 

  53. 53.

    Lowe JA, Jones P, Wilson DM (2010) Network biology as a new approach to drug discovery. Curr Opin Drug Discov Devel 13:524–526

    CAS  PubMed  Google Scholar 

  54. 54.

    Lussier YA, Chen JL (2011) The emergence of genome-based drug repositioning. Sci Transl Med 3:96ps35

    CAS  PubMed  Google Scholar 

  55. 55.

    Mardis ER (2010) The $1,000 genome, the $100,000 analysis? Genome Med 2:84

    PubMed Central  PubMed  Google Scholar 

  56. 56.

    Mayr E (1961) Cause and effect in biology. Science 134:1501–1506

    CAS  PubMed  Google Scholar 

  57. 57.

    Meireles LM, Domling AS, Camacho CJ (2010) ANCHOR: a web server and database for analysis of protein–protein interaction binding pockets for drug discovery. Nucleic Acids Res 38:W407–W411

    CAS  PubMed Central  PubMed  Google Scholar 

  58. 58.

    Millay DP, Goonasekera SA, Sargent MA, Maillet M, Aronow BJ, Molkentin JD (2009) Calcium influx is sufficient to induce muscular dystrophy through a TRPC-dependent mechanism. Proc Natl Acad Sci U S A 106:19023–19028

    CAS  PubMed Central  PubMed  Google Scholar 

  59. 59.

    Moran MM, McAlexander MA, Biro T, Szallasi A (2011) Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 10:601–620

    CAS  PubMed  Google Scholar 

  60. 60.

    Myers CL, Robson D, Wible A, Hibbs MA, Chiriac C, Theesfeld CL, Dolinski K, Troyanskaya OG (2005) Discovery of biological networks from diverse functional genomic data. Genome Biol 6:R114

    PubMed Central  PubMed  Google Scholar 

  61. 61.

    Myers CL, Chiriac C, Troyanskaya OG (2009) Discovering biological networks from diverse functional genomic data. Methods Mol Biol 563:157–175

    PubMed  Google Scholar 

  62. 62.

    Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR (2006) Inference in Bayesian networks. Nat Biotechnol 24:51–53

    CAS  PubMed  Google Scholar 

  63. 63.

    Nilius B, Owsianik G (2010a) Channelopathies converge on TRPV4. Nat Genet 42:98–100

    CAS  Google Scholar 

  64. 64.

    Nilius B, Owsianik G (2010b) Transient receptor potential channelopathies. Pflugers Archiv 460:437–450

    CAS  Google Scholar 

  65. 65.

    Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12:218

    CAS  PubMed Central  PubMed  Google Scholar 

  66. 66.

    Nilius B, Owsianik G, Voets T (2008) Transient receptor potential channels meet phosphoinositides. EMBO J 27:2809–2816

    CAS  PubMed  Google Scholar 

  67. 67.

    Oliver S (2000) Guilt-by-association goes global. Nature 403:601–603

    CAS  PubMed  Google Scholar 

  68. 68.

    O'Malley MA, Soyer OS (2012) The roles of integration in molecular systems biology. Stud Hist Philos Biol Biomed Sci 43:58–68

    PubMed  Google Scholar 

  69. 69.

    Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717

    CAS  PubMed  Google Scholar 

  70. 70.

    Pe'er D, Hacohen N (2011) Principles and strategies for developing network models in cancer. Cell 144:864–873

    PubMed Central  PubMed  Google Scholar 

  71. 71.

    Phelan KD, Mock MM, Kretz O, Shwe UT, Kozhemyakin M, Greenfield LJ, Dietrich A, Birnbaumer L, Freichel M, Flockerzi V, Zheng F (2012) Heteromeric canonical transient receptor potential 1 and 4 channels play a critical role in epileptiform burst firing and seizure-induced neurodegeneration. Mol Pharmacol 81:384–392

    CAS  PubMed  Google Scholar 

  72. 72.

    Piro RM (2012) Network medicine: linking disorders. Hum Genet 131:1811–1820

    PubMed  Google Scholar 

  73. 73.

    Pujana MA, Han JD, Starita LM, Stevens KN, Tewari M, Ahn JS, Rennert G, Moreno V, Kirchhoff T, Gold B, Assmann V, Elshamy WM, Rual JF, Levine D, Rozek LS, Gelman RS, Gunsalus KC, Greenberg RA, Sobhian B, Bertin N, Venkatesan K, Ayivi-Guedehoussou N, Sole X, Hernandez P, Lazaro C, Nathanson KL, Weber BL, Cusick ME, Hill DE, Offit K, Livingston DM, Gruber SB, Parvin JD, Vidal M (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39:1338–1349

    CAS  PubMed  Google Scholar 

  74. 74.

    Quigley DA, To MD, Kim IJ, Lin KK, Albertson DG, Sjolund J, Perez-Losada J, Balmain A (2011) Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility. Genome Biol 12:R5

    PubMed Central  PubMed  Google Scholar 

  75. 75.

    Ruffner H, Bauer A, Bouwmeester T (2007) Human protein–protein interaction networks and the value for drug discovery. Drug Discov Today 12:709–716

    CAS  PubMed  Google Scholar 

  76. 76.

    Sanseau P, Agarwal P, Barnes MR, Pastinen T, Richards JB, Cardon LR, Mooser V (2012) Use of genome-wide association studies for drug repositioning. Nat Biotechnol 30:317–320

    CAS  PubMed  Google Scholar 

  77. 77.

    Schadt EE, Bjorkegren JL (2012) NEW: network-enabled wisdom in biology, medicine, and health care. Sci Transl Med 4:115rv1

    PubMed  Google Scholar 

  78. 78.

    Searls DB (2005) Data integration: challenges for drug discovery. Nat Rev Drug Discov 4:45–58

    CAS  PubMed  Google Scholar 

  79. 79.

    Sharif-Naeini R, Folgering JH, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJ, Honore E (2009) Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139:587–596

    CAS  PubMed  Google Scholar 

  80. 80.

    Shin YC, Shin SY, So I, Kwon D, Jeon JH (2011) TRIP database: a manually curated database of protein–protein interactions for mammalian TRP channels. Nucleic Acids Res 39:D356–D361

    CAS  PubMed Central  PubMed  Google Scholar 

  81. 81.

    Shin YC, Shin SY, Chun JN, Cho HS, Lim JM, Kim HG, So I, Kwon D, Jeon JH (2012) TRIP database 2.0: a manually curated information hub for accessing TRP channel interaction network. PloS One 7:e47165

    CAS  PubMed Central  PubMed  Google Scholar 

  82. 82.

    Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A, Sage J, Butte AJ (2011) Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Transl Med 3:96ra77

    CAS  PubMed Central  PubMed  Google Scholar 

  83. 83.

    Slater T, Bouton C, Huang ES (2008) Beyond data integration. Drug Discov Today 13:584–589

    CAS  PubMed  Google Scholar 

  84. 84.

    Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    CAS  PubMed  Google Scholar 

  85. 85.

    Stein LD (2003) Integrating biological databases. Nat Rev Genet 4:337–345

    CAS  PubMed  Google Scholar 

  86. 86.

    Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128:509–522

    CAS  PubMed Central  PubMed  Google Scholar 

  87. 87.

    Stelling J, Sauer U, Szallasi Z, Doyle FJ 3rd, Doyle J (2004) Robustness of cellular functions. Cell 118:675–685

    CAS  PubMed  Google Scholar 

  88. 88.

    Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655

    CAS  PubMed  Google Scholar 

  89. 89.

    Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019

    PubMed  Google Scholar 

  90. 90.

    Tanaka G, Morino K, Aihara K (2012) Dynamical robustness in complex networks: the crucial role of low-degree nodes. Sci Rep 2:232

    CAS  PubMed Central  PubMed  Google Scholar 

  91. 91.

    Tang J, Tan CY, Oresic M, Vidal-Puig A (2009) Integrating post-genomic approaches as a strategy to advance our understanding of health and disease. Genome Med 1:35

    PubMed Central  PubMed  Google Scholar 

  92. 92.

    Tang H, Zhong F, Xie H (2012) A quick guide to biomolecular network studies: construction, analysis, applications, and resources. Biochem Biophys Res Commun 424:7–11

    CAS  PubMed  Google Scholar 

  93. 93.

    Taylor IW, Wrana JL (2012) Protein interaction networks in medicine and disease. Proteomics 12:1706–1716

    CAS  PubMed  Google Scholar 

  94. 94.

    Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27:199–204

    CAS  PubMed  Google Scholar 

  95. 95.

    Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144:986–998

    CAS  PubMed Central  PubMed  Google Scholar 

  96. 96.

    Wang X, Wei X, Thijssen B, Das J, Lipkin SM, Yu H (2012) Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat Biotechnol 30:159–164

    CAS  PubMed Central  PubMed  Google Scholar 

  97. 97.

    Wu LJ, Sweet TB, Clapham DE (2010) International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 62:381–404

    CAS  PubMed  Google Scholar 

  98. 98.

    Xenarios I, Eisenberg D (2001) Protein interaction databases. Curr Opin Biotechnol 12:334–339

    CAS  PubMed  Google Scholar 

  99. 99.

    Ye L, Kleiner S, Wu J, Sah R, Gupta RK, Banks AS, Cohen P, Khandekar MJ, Bostrom P, Mepani RJ, Laznik D, Kamenecka TM, Song X, Liedtke W, Mootha VK, Puigserver P, Griffin PR, Clapham DE, Spiegelman BM (2012) TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell 151:96–110

    CAS  PubMed Central  PubMed  Google Scholar 

  100. 100.

    Zanzoni A, Soler-Lopez M, Aloy P (2009) A network medicine approach to human disease. FEBS Lett 583:1759–1765

    CAS  PubMed  Google Scholar 

  101. 101.

    Zhang S, Liu CC, Li W, Shen H, Laird PW, Zhou XJ (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 40:9379–9391

    CAS  PubMed Central  PubMed  Google Scholar 

  102. 102.

    Zhong Q, Simonis N, Li QR, Charloteaux B, Heuze F, Klitgord N, Tam S, Yu H, Venkatesan K, Mou D, Swearingen V, Yildirim MA, Yan H, Dricot A, Szeto D, Lin C, Hao T, Fan C, Milstein S, Dupuy D, Brasseur R, Hill DE, Cusick ME, Vidal M (2009) Edgetic perturbation models of human inherited disorders. Mol Syst Biol 5:321

    PubMed Central  PubMed  Google Scholar 

  103. 103.

    Zhu J, Zhang B, Smith EN, Drees B, Brem RB, Kruglyak L, Bumgarner RE, Schadt EE (2008) Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet 40:854–861

    CAS  PubMed Central  PubMed  Google Scholar 

  104. 104.

    Zhu J, Sova P, Xu Q, Dombek KM, Xu EY, Vu H, Tu Z, Brem RB, Bumgarner RE, Schadt EE (2012) Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation. PLoS Biol 10:e1001301

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MEST; 2010-0019472, 2010-0021234, 2012R1A1A3007388) and by the National IT Industry Promotion Agency (NIPA) funded by the Korea government (MKE; NIPA-2013-H0401-13-1001). We are very grateful to Sung-In Lee and Sung-Yup Cho (Seoul National University) and Sanghoon Lee (Utah University) for helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ju-Hong Jeon.

Additional information

Jung Nyeo Chun, Jin Muk Lim, and Young Kang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1
figure7

(JPEG 72 kb)

Fig. S2
figure8

(JPEG 170 kb)

ESM Tutorial

(PDF 4785 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chun, J.N., Lim, J.M., Kang, Y. et al. A network perspective on unraveling the role of TRP channels in biology and disease. Pflugers Arch - Eur J Physiol 466, 173–182 (2014). https://doi.org/10.1007/s00424-013-1292-2

Download citation

Keywords

  • TRP channel
  • Network
  • Protein-protein interaction
  • Data-driven science