Skip to main content
Log in

Compartmentalization of cyclic nucleotide signaling: a question of when, where, and why?

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Preciseness of cellular behavior depends upon how an extracellular cue mobilizes a correct orchestra of cellular messengers and effector proteins spatially and temporally. This concept, termed compartmentalization of cellular signaling, is now known to form the molecular basis of many aspects of cellular behavior in health and disease. The cyclic nucleotides cyclic adenosine monophosphate and cyclic guanosine monophosphate are ubiquitous cellular messengers that can be compartmentalized in three ways: first, by their physical containment; second, by formation of multiple protein signaling complexes; and third, by their selective depletion. Compartmentalized cyclic nucleotide signaling is a very prevalent response among all cell types. In order to understand how it becomes relevant to cellular behavior, it is important to know how it is executed in cells to regulate physiological responses and, also, how its execution or dysregulation can lead to a pathophysiological condition, which forms the scope of the presented review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abrahamsen H, Baillie G, Ngai J, Vang T, Nika K, Ruppelt A, Mustelin T, Zaccolo M, Houslay M, Tasken K (2004) TCR- and CD28-mediated recruitment of phosphodiesterase 4 to lipid rafts potentiates TCR signaling. J Immunol 173:4847–4858

    PubMed  CAS  Google Scholar 

  2. Ashby MC, Tepikin AV (2002) Polarized calcium and calmodulin signaling in secretory epithelia. Physiol Rev 82:701–734

    PubMed  CAS  Google Scholar 

  3. Baillie GS, Sood A, McPhee I, Gall I, Perry SJ, Lefkowitz RJ, Houslay MD (2003) beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proc Natl Acad Sci U S A 100:940–945

    PubMed  CAS  Google Scholar 

  4. Bauman AL, Goehring AS, Scott JD (2004) Orchestration of synaptic plasticity through AKAP signaling complexes. Neuropharmacology 46:299–310

    PubMed  CAS  Google Scholar 

  5. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    PubMed  CAS  Google Scholar 

  6. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    PubMed  CAS  Google Scholar 

  7. Bulenger S, Marullo S, Bouvier M (2005) Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 26:131–137

    PubMed  CAS  Google Scholar 

  8. Bussolati B, Dunk C, Grohman M, Kontos CD, Mason J, Ahmed A (2001) Vascular endothelial growth factor receptor-1 modulates vascular endothelial growth factor-mediated angiogenesis via nitric oxide. Am J Pathol 159:993–1008

    PubMed  CAS  Google Scholar 

  9. Buxton IL, Brunton LL (1983) Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem 258:10233–10239

    PubMed  CAS  Google Scholar 

  10. Carnegie GK, Smith FD, McConnachie G, Langeberg LK, Scott JD (2004) AKAP-Lbc nucleates a protein kinase D activation scaffold. Mol Cell 15:889–899

    PubMed  CAS  Google Scholar 

  11. Cha B, Kim JH, Hut H, Hogema BM, Nadarja J, Zizak M, Cavet M, Lee-Kwon W, Lohmann SM, Smolenski A, Tse CM, Yun C, de Jonge HR, Donowitz M (2005) cGMP inhibition of Na+/H+ antiporter 3 (NHE3) requires PDZ domain adapter NHERF2, a broad specificity protein kinase G-anchoring protein. J Biol Chem 280:16642–16650

    PubMed  CAS  Google Scholar 

  12. Cheepala S, Hulot JS, Morgan JA, Sassi Y, Zhang W, Naren AP, Schuetz JD (2013) Cyclic nucleotide compartmentalization: contributions of phosphodiesterases and ATP-binding cassette transporters. Annu Rev Pharmacol Toxicol 53:231–253

    PubMed  CAS  Google Scholar 

  13. Chen H, Levine YC, Golan DE, Michel T, Lin AJ (2008) Atrial natriuretic peptide-initiated cGMP pathways regulate vasodilator-stimulated phosphoprotein phosphorylation and angiogenesis in vascular endothelium. J Biol Chem 283:4439–4447

    PubMed  CAS  Google Scholar 

  14. Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–628

    PubMed  CAS  Google Scholar 

  15. Coghlan VM, Perrino BA, Howard M, Langeberg LK, Hicks JB, Gallatin WM, Scott JD (1995) Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267:108–111

    PubMed  CAS  Google Scholar 

  16. Colledge M, Dean RA, Scott GK, Langeberg LK, Huganir RL, Scott JD (2000) Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron 27:107–119

    PubMed  CAS  Google Scholar 

  17. Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    PubMed  CAS  Google Scholar 

  18. Cooper DM, Crossthwaite AJ (2006) Higher-order organization and regulation of adenylyl cyclases. Trends Pharmacol Sci 27:426–431

    PubMed  CAS  Google Scholar 

  19. Cullen PJ, Lockyer PJ (2002) Integration of calcium and Ras signalling. Nat Rev Mol Cell Biol 3:339–348

    PubMed  CAS  Google Scholar 

  20. Dao KK, Teigen K, Kopperud R, Hodneland E, Schwede F, Christensen AE, Martinez A, Doskeland SO (2006) Epac1 and cAMP-dependent protein kinase holoenzyme have similar cAMP affinity, but their cAMP domains have distinct structural features and cyclic nucleotide recognition. J Biol Chem 281:21500–21511

    PubMed  CAS  Google Scholar 

  21. Davare MA, Avdonin V, Hall DD, Peden EM, Burette A, Weinberg RJ, Horne MC, Hoshi T, Hell JW (2001) A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science 293:98–101

    PubMed  CAS  Google Scholar 

  22. Dekkers BG, Racke K, Schmidt M (2013) Distinct PKA and Epac compartmentalization in airway function and plasticity. Pharmacol Ther 137:248–265

    PubMed  CAS  Google Scholar 

  23. Dessauer CW (2009) Adenylyl cyclase—A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol Pharmacol 76:935–941

    PubMed  CAS  Google Scholar 

  24. Dev KK (2004) Making protein interactions druggable: targeting PDZ domains. Nat Rev Drug Discov 3:1047–1056

    PubMed  CAS  Google Scholar 

  25. Diviani D, Abuin L, Cotecchia S, Pansier L (2004) Anchoring of both PKA and 14-3-3 inhibits the Rho-GEF activity of the AKAP-Lbc signaling complex. EMBO J 23:2811–2820

    PubMed  CAS  Google Scholar 

  26. Diviani D, Soderling J, Scott JD (2001) AKAP-Lbc anchors protein kinase A and nucleates Galpha 12-selective Rho-mediated stress fiber formation. J Biol Chem 276:44247–44257

    PubMed  CAS  Google Scholar 

  27. Dodge-Kafka KL, Soughayer J, Pare GC, Carlisle Michel JJ, Langeberg LK, Kapiloff MS, Scott JD (2005) The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 437:574–578

    PubMed  CAS  Google Scholar 

  28. Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV, Houslay MD, Langeberg LK, Scott JD (2001) mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J 20:1921–1930

    PubMed  CAS  Google Scholar 

  29. Dougherty MK, Morrison DK (2004) Unlocking the code of 14-3-3. J Cell Sci 117:1875–1884

    PubMed  CAS  Google Scholar 

  30. Dransfield DT, Bradford AJ, Smith J, Martin M, Roy C, Mangeat PH, Goldenring JR (1997) Ezrin is a cyclic AMP-dependent protein kinase anchoring protein. EMBO J 16:35–43

    PubMed  CAS  Google Scholar 

  31. Dyachok O, Isakov Y, Sagetorp J, Tengholm A (2006) Oscillations of cyclic AMP in hormone-stimulated insulin-secreting beta-cells. Nature 439:349–352

    PubMed  CAS  Google Scholar 

  32. Ellis-Davies GC (2007) Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat Methods 4:619–628

    PubMed  CAS  Google Scholar 

  33. Fagan KA, Rich TC, Tolman S, Schaack J, Karpen JW, Cooper DM (1999) Adenovirus-mediated expression of an olfactory cyclic nucleotide-gated channel regulates the endogenous Ca2+-inhibitable adenylyl cyclase in C6-2B glioma cells. J Biol Chem 274:12445–12453

    PubMed  CAS  Google Scholar 

  34. Fagan KA, Smith KE, Cooper DM (2000) Regulation of the Ca2+-inhibitable adenylyl cyclase type VI by capacitative Ca2+ entry requires localization in cholesterol-rich domains. J Biol Chem 275:26530–26537

    PubMed  CAS  Google Scholar 

  35. Farber DB, Danciger M (1997) Identification of genes causing photoreceptor degenerations leading to blindness. Curr Opin Neurobiol 7:666–673

    PubMed  CAS  Google Scholar 

  36. Fredriksson R, Schioth HB (2005) The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 67:1414–1425

    PubMed  CAS  Google Scholar 

  37. Furst R, Bubik MF, Bihari P, Mayer BA, Khandoga AG, Hoffmann F, Rehberg M, Krombach F, Zahler S, Vollmar AM (2008) Atrial natriuretic peptide protects against histamine-induced endothelial barrier dysfunction in vivo. Mol Pharmacol 74:1–8

    PubMed  Google Scholar 

  38. Gabriel SE, Brigman KN, Koller BH, Boucher RC, Stutts MJ (1994) Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 266:107–109

    PubMed  CAS  Google Scholar 

  39. Gorbunova YV, Spitzer NC (2002) Dynamic interactions of cyclic AMP transients and spontaneous Ca(2+) spikes. Nature 418:93–96

    PubMed  CAS  Google Scholar 

  40. Gretarsdottir S, Sveinbjornsdottir S, Jonsson HH, Jakobsson F, Einarsdottir E, Agnarsson U, Shkolny D, Einarsson G, Gudjonsdottir HM, Valdimarsson EM, Einarsson OB, Thorgeirsson G, Hadzic R, Jonsdottir S, Reynisdottir ST, Bjarnadottir SM, Gudmundsdottir T, Gudlaugsdottir GJ, Gill R, Lindpaintner K, Sainz J, Hannesson HH, Sigurdsson GT, Frigge ML, Kong A, Gudnason V, Stefansson K, Gulcher JR (2002) Localization of a susceptibility gene for common forms of stroke to 5q12. Am J Hum Genet 70:593–603

    PubMed  CAS  Google Scholar 

  41. Guo D, Tan YC, Wang D, Madhusoodanan KS, Zheng Y, Maack T, Zhang JJ, Huang XY (2007) A Rac-cGMP signaling pathway. Cell 128:341–355

    PubMed  CAS  Google Scholar 

  42. Hara Y, Sassi Y, Guibert C, Gambaryan N, Dorfmuller P, Eddahibi S, Lompre AM, Humbert M, Hulot JS (2011) Inhibition of MRP4 prevents and reverses pulmonary hypertension in mice. J Clin Invest 121:2888–2897

    PubMed  CAS  Google Scholar 

  43. Haugh JM (2002) Localization of receptor-mediated signal transduction pathways: the inside story. Mol Interv 2:292–307

    PubMed  CAS  Google Scholar 

  44. Hendricks M, Ha H, Maffey N, Zhang Y (2012) Compartmentalized calcium dynamics in a C. elegans interneuron encode head movement. Nature 487:99–103

    PubMed  CAS  Google Scholar 

  45. Honda A, Adams SR, Sawyer CL, Lev-Ram V, Tsien RY, Dostmann WR (2001) Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc Natl Acad Sci U S A 98:2437–2442

    PubMed  CAS  Google Scholar 

  46. Hong D, Jaron D, Buerk DG, Barbee KA (2008) Transport-dependent calcium signaling in spatially segregated cellular caveolar domains. Am J Physiol Cell Physiol 294:C856–C866

    PubMed  CAS  Google Scholar 

  47. Houslay MD, Adams DR (2003) PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 370:1–18

    PubMed  CAS  Google Scholar 

  48. Howe AK, Baldor LC, Hogan BP (2005) Spatial regulation of the cAMP-dependent protein kinase during chemotactic cell migration. Proc Natl Acad Sci U S A 102:14320–14325

    PubMed  CAS  Google Scholar 

  49. Huang C, Hepler JR, Chen LT, Gilman AG, Anderson RG, Mumby SM (1997) Organization of G proteins and adenylyl cyclase at the plasma membrane. Mol Biol Cell 8:2365–2378

    PubMed  CAS  Google Scholar 

  50. Huang P, Lazarowski ER, Tarran R, Milgram SL, Boucher RC, Stutts MJ (2001) Compartmentalized autocrine signaling to cystic fibrosis transmembrane conductance regulator at the apical membrane of airway epithelial cells. Proc Natl Acad Sci U S A 98:14120–14125

    PubMed  CAS  Google Scholar 

  51. Jackson EK, Raghvendra DK (2004) The extracellular cyclic AMP-adenosine pathway in renal physiology. Annu Rev Physiol 66:571–599

    PubMed  CAS  Google Scholar 

  52. Jackson EK, Ren J, Cheng D, Mi Z (2011) Extracellular cAMP-adenosine pathways in the mouse kidney. Am J Physiol Renal Physiol 301:F565–F573

    PubMed  CAS  Google Scholar 

  53. Kass DA, Takimoto E, Nagayama T, Champion HC (2007) Phosphodiesterase regulation of nitric oxide signaling. Cardiovasc Res 75:303–314

    PubMed  CAS  Google Scholar 

  54. Klauck TM, Faux MC, Labudda K, Langeberg LK, Jaken S, Scott JD (1996) Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science 271:1589–1592

    PubMed  CAS  Google Scholar 

  55. Landa LR Jr, Harbeck M, Kaihara K, Chepurny O, Kitiphongspattana K, Graf O, Nikolaev VO, Lohse MJ, Holz GG, Roe MW (2005) Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 beta-cell line. J Biol Chem 280:31294–31302

    PubMed  CAS  Google Scholar 

  56. Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, Harvey RD, Richter W, Jin SL, Conti M, Marks AR (2005) Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123:25–35

    PubMed  CAS  Google Scholar 

  57. Li C, Dandridge KS, Di A, Marrs KL, Harris EL, Roy K, Jackson JS, Makarova NV, Fujiwara Y, Farrar PL, Nelson DJ, Tigyi GJ, Naren AP (2005) Lysophosphatidic acid inhibits cholera toxin-induced secretory diarrhea through CFTR-dependent protein interactions. J Exp Med 202:975–986

    PubMed  CAS  Google Scholar 

  58. Li C, Krishnamurthy PC, Penmatsa H, Marrs KL, Wang XQ, Zaccolo M, Jalink K, Li M, Nelson DJ, Schuetz JD, Naren AP (2007) Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia. Cell 131:940–951

    PubMed  CAS  Google Scholar 

  59. Linder AE, McCluskey LP, Cole KR 3rd, Lanning KM, Webb RC (2005) Dynamic association of nitric oxide downstream signaling molecules with endothelial caveolin-1 in rat aorta. J Pharmacol Exp Ther 314:9–15

    PubMed  CAS  Google Scholar 

  60. Lopez MJ, Wong SK, Kishimoto I, Dubois S, Mach V, Friesen J, Garbers DL, Beuve A (1995) Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 378:65–68

    PubMed  CAS  Google Scholar 

  61. Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52:375–414

    PubMed  CAS  Google Scholar 

  62. Lynch MJ, Baillie GS, Houslay MD (2007) cAMP-specific phosphodiesterase-4D5 (PDE4D5) provides a paradigm for understanding the unique non-redundant roles that PDE4 isoforms play in shaping compartmentalized cAMP cell signalling. Biochem Soc Trans 35:938–941

    PubMed  CAS  Google Scholar 

  63. Madhusoodanan KS, Murad F (2007) NO-cGMP signaling and regenerative medicine involving stem cells. Neurochem Res 32:681–694

    PubMed  CAS  Google Scholar 

  64. McConnachie G, Langeberg LK, Scott JD (2006) AKAP signaling complexes: getting to the heart of the matter. Trends Mol Med 12:317–323

    PubMed  CAS  Google Scholar 

  65. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    PubMed  CAS  Google Scholar 

  66. Mongillo M, McSorley T, Evellin S, Sood A, Lissandron V, Terrin A, Huston E, Hannawacker A, Lohse MJ, Pozzan T, Houslay MD, Zaccolo M (2004) Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ Res 95:67–75

    PubMed  CAS  Google Scholar 

  67. Mongillo M, Tocchetti CG, Terrin A, Lissandron V, Cheung YF, Dostmann WR, Pozzan T, Kass DA, Paolocci N, Houslay MD, Zaccolo M (2006) Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res 98:226–234

    PubMed  CAS  Google Scholar 

  68. Mor A, Philips MR (2006) Compartmentalized Ras/MAPK signaling. Annu Rev Immunol 24:771–800

    PubMed  CAS  Google Scholar 

  69. Nagayama T, Zhang M, Hsu S, Takimoto E, Kass DA (2008) Sustained soluble guanylate cyclase stimulation offsets nitric-oxide synthase inhibition to restore acute cardiac modulation by sildenafil. J Pharmacol Exp Ther 326:380–387

    PubMed  CAS  Google Scholar 

  70. Naren AP, Cobb B, Li C, Roy K, Nelson D, Heda GD, Liao J, Kirk KL, Sorscher EJ, Hanrahan J, Clancy JP (2003) A macromolecular complex of beta 2 adrenergic receptor, CFTR, and ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA. Proc Natl Acad Sci U S A 100:342–346

    PubMed  CAS  Google Scholar 

  71. Netherton SJ, Maurice DH (2005) Vascular endothelial cell cyclic nucleotide phosphodiesterases and regulated cell migration: implications in angiogenesis. Mol Pharmacol 67:263–272

    PubMed  CAS  Google Scholar 

  72. Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Paur H, Lohse MJ, Korchev YE, Harding SE, Gorelik J (2010) Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–1657

    PubMed  CAS  Google Scholar 

  73. Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422

    PubMed  CAS  Google Scholar 

  74. Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci U S A 94:14730–14735

    PubMed  CAS  Google Scholar 

  75. Ostrom RS, Gregorian C, Drenan RM, Xiang Y, Regan JW, Insel PA (2001) Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J Biol Chem 276:42063–42069

    PubMed  CAS  Google Scholar 

  76. Ostrom RS, Insel PA (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol 143:235–245

    PubMed  CAS  Google Scholar 

  77. Patterson RL, van Rossum DB, Gill DL (1999) Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell 98:487–499

    PubMed  CAS  Google Scholar 

  78. Penmatsa H, Zhang W, Yarlagadda S, Li C, Conoley VG, Yue J, Bahouth SW, Buddington RK, Zhang G, Nelson DJ, Sonecha MD, Manganiello V, Wine JJ, Naren AP (2010) Compartmentalized cyclic adenosine 3′,5′-monophosphate at the plasma membrane clusters PDE3A and cystic fibrosis transmembrane conductance regulator into microdomains. Mol Biol Cell 21:1097–1110

    PubMed  CAS  Google Scholar 

  79. Perino A, Ghigo A, Scott JD, Hirsch E (2012) Anchoring proteins as regulators of signaling pathways. Circ Res 111:482–492

    PubMed  CAS  Google Scholar 

  80. Piggott LA, Hassell KA, Berkova Z, Morris AP, Silberbach M, Rich TC (2006) Natriuretic peptides and nitric oxide stimulate cGMP synthesis in different cellular compartments. J Gen Physiol 128:3–14

    PubMed  CAS  Google Scholar 

  81. Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: epac as a novel cAMP indicator. EMBO Rep 5:1176–1180

    PubMed  CAS  Google Scholar 

  82. Rehmann H, Das J, Knipscheer P, Wittinghofer A, Bos JL (2006) Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature 439:625–628

    PubMed  CAS  Google Scholar 

  83. Reierson GW, Guo S, Mastronardi C, Licinio J, Wong ML (2011) cGMP signaling, phosphodiesterases and major depressive disorder. Curr Neuropharmacol 9:715–727

    PubMed  CAS  Google Scholar 

  84. Rich TC, Fagan KA, Nakata H, Schaack J, Cooper DM, Karpen JW (2000) Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol 116:147–161

    PubMed  CAS  Google Scholar 

  85. Rosen RC, Kostis JB (2003) Overview of phosphodiesterase 5 inhibition in erectile dysfunction. Am J Cardiol 92:9M–18M

    PubMed  CAS  Google Scholar 

  86. Sabrane K, Kruse MN, Fabritz L, Zetsche B, Mitko D, Skryabin BV, Zwiener M, Baba HA, Yanagisawa M, Kuhn M (2005) Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide. J Clin Invest 115:1666–1674

    PubMed  CAS  Google Scholar 

  87. Sassi Y, Lipskaia L, Vandecasteele G, Nikolaev VO, Hatem SN, Cohen Aubart F, Russel FG, Mougenot N, Vrignaud C, Lechat P, Lompre AM, Hulot JS (2008) Multidrug resistance-associated protein 4 regulates cAMP-dependent signaling pathways and controls human and rat SMC proliferation. J Clin Invest 118:2747–2757

    PubMed  CAS  Google Scholar 

  88. Schwartz JH (2001) The many dimensions of cAMP signaling. Proc Natl Acad Sci U S A 98:13482–13484

    PubMed  CAS  Google Scholar 

  89. Sears CL, Kaper JB (1996) Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol Rev 60:167–215

    PubMed  CAS  Google Scholar 

  90. Sinha C, Ren A, Arora K, Moon CS, Yarlagadda S, Zhang W, Cheepala SB, Schuetz JD, Naren AP (2012) Multi-drug resistance protein 4 (MRP4)-mediated regulation of fibroblast cell migration reflects a dichotomous role of intracellular cyclic nucleotides. J Biol Chem

  91. Sinha C, Ren A, Arora K, Moon CS, Yarlagadda S, Zhang W, Cheepala SB, Schuetz JD, Naren AP (2013) Multi-drug resistance protein 4 (MRP4)-mediated regulation of fibroblast cell migration reflects a dichotomous role of intracellular cyclic nucleotides. J Biol Chem 288:3786–3794

    PubMed  CAS  Google Scholar 

  92. Smith FD, Langeberg LK, Scott JD (2006) The where’s and when’s of kinase anchoring. Trends Biochem Sci 31:316–323

    PubMed  CAS  Google Scholar 

  93. Smith FD, Scott JD (2006) Anchored cAMP signaling: onward and upward—a short history of compartmentalized cAMP signal transduction. Eur J Cell Biol 85:585–592

    PubMed  CAS  Google Scholar 

  94. Smith KE, Gu C, Fagan KA, Hu B, Cooper DM (2002) Residence of adenylyl cyclase type 8 in caveolae is necessary but not sufficient for regulation by capacitative Ca(2+) entry. J Biol Chem 277:6025–6031

    PubMed  CAS  Google Scholar 

  95. Stork PJ, Schmitt JM (2002) Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 12:258–266

    PubMed  CAS  Google Scholar 

  96. Sussman MA, Lim HW, Gude N, Taigen T, Olson EN, Robbins J, Colbert MC, Gualberto A, Wieczorek DF, Molkentin JD (1998) Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281:1690–1693

    PubMed  CAS  Google Scholar 

  97. Takimoto E, Belardi D, Tocchetti CG, Vahebi S, Cormaci G, Ketner EA, Moens AL, Champion HC, Kass DA (2007) Compartmentalization of cardiac beta-adrenergic inotropy modulation by phosphodiesterase type 5. Circulation 115:2159–2167

    PubMed  CAS  Google Scholar 

  98. Tanabe M, Ueda M, Endo M, Kitajima M (1996) The effect of atrial natriuretic peptide on pulmonary acid injury in a pig model. Am J Respir Crit Care Med 154:1351–1356

    PubMed  CAS  Google Scholar 

  99. Tasken K, Aandahl EM (2004) Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 84:137–167

    PubMed  CAS  Google Scholar 

  100. Tavalin SJ, Colledge M, Hell JW, Langeberg LK, Huganir RL, Scott JD (2002) Regulation of GluR1 by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression. J Neurosci 22:3044–3051

    PubMed  CAS  Google Scholar 

  101. Tresguerres M, Levin LR, Buck J (2011) Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney Int 79:1277–1288

    PubMed  CAS  Google Scholar 

  102. Trewavas AJ, Malho R (1997) Signal perception and transduction: the origin of the phenotype. Plant Cell 9:1181–1195

    PubMed  CAS  Google Scholar 

  103. Tsai EJ, Kass DA (2009) Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther 122:216–238

    PubMed  CAS  Google Scholar 

  104. Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H (2009) Calcium flickers steer cell migration. Nature 457:901–905

    PubMed  CAS  Google Scholar 

  105. Willoughby D, Cooper DM (2006) Ca2+ stimulation of adenylyl cyclase generates dynamic oscillations in cyclic AMP. J Cell Sci 119:828–836

    PubMed  CAS  Google Scholar 

  106. Wong W, Goehring AS, Kapiloff MS, Langeberg LK, Scott JD (2008) mAKAP compartmentalizes oxygen-dependent control of HIF-1alpha. Sci Signal 1:ra18

    PubMed  Google Scholar 

  107. Xiang Y, Naro F, Zoudilova M, Jin SL, Conti M, Kobilka B (2005) Phosphodiesterase 4D is required for beta2 adrenoceptor subtype-specific signaling in cardiac myocytes. Proc Natl Acad Sci U S A 102:909–914

    PubMed  CAS  Google Scholar 

  108. Yuan J, Slice LW, Rozengurt E (2001) Activation of protein kinase D by signaling through Rho and the alpha subunit of the heterotrimeric G protein G13. J Biol Chem 276:38619–38627

    PubMed  CAS  Google Scholar 

  109. Yuste R, Majewska A, Holthoff K (2000) From form to function: calcium compartmentalization in dendritic spines. Nat Neurosci 3:653–659

    PubMed  CAS  Google Scholar 

  110. Zabel U, Kleinschnitz C, Oh P, Nedvetsky P, Smolenski A, Muller H, Kronich P, Kugler P, Walter U, Schnitzer JE, Schmidt HH (2002) Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide. Nat Cell Biol 4:307–311

    PubMed  CAS  Google Scholar 

  111. Zaccolo M, De Giorgi F, Cho CY, Feng L, Knapp T, Negulescu PA, Taylor SS, Tsien RY, Pozzan T (2000) A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol 2:25–29

    PubMed  CAS  Google Scholar 

  112. Zaccolo M, Movsesian MA (2007) cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology. Circ Res 100:1569–1578

    PubMed  CAS  Google Scholar 

  113. Zhang J, Ma Y, Taylor SS, Tsien RY (2001) Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc Natl Acad Sci U S A 98:14997–15002

    PubMed  CAS  Google Scholar 

  114. Zippin JH, Farrell J, Huron D, Kamenetsky M, Hess KC, Fischman DA, Levin LR, Buck J (2004) Bicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain. J Cell Biol 164:527–534

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Jin Emerson-Cobb for editing the manuscript. This work was supported by grants DK080834 and DK093045 from the US National Institutes of Health (NIH) and US Cystic Fibrosis Foundation NAREN12PO.

Conflict of interest

Authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjaparavanda P. Naren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, K., Sinha, C., Zhang, W. et al. Compartmentalization of cyclic nucleotide signaling: a question of when, where, and why?. Pflugers Arch - Eur J Physiol 465, 1397–1407 (2013). https://doi.org/10.1007/s00424-013-1280-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1280-6

Keywords

Navigation