Skip to main content

Advertisement

Log in

Pericytes in the eye

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Pericytes in the retina differ from pericytes in many other organs by their high density and their cooperative role in the neurovascular unit. Their diverse ontogeny and the fact that not one pericyte marker identifies the entire population suggest also functional plurality in the retina, including invading cells of mesenchymal origin. Further, to establish factors determining pericyte recruitment, modifiers of pericyte adhesion and homeostasis, such as notch-3 and angptl-4, have been recently identified, expanding the understanding of pericyte function in the retina. Also, the role of pericytes as part of the neurovascular unit has been appreciated, given that the neuroglia determines pericyte survival and motility under disease conditions. Pericyte dropout is not unique in the diabetic retina, and non-diabetic animal models may prove useful in the search for mechanisms involved in disease-associated dysfunction of the neurovascular unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25

    Article  PubMed  CAS  Google Scholar 

  2. Alikhani M, Roy S, Graves DT (2010) Foxo1 plays an essential role in apoptosis of retinal pericytes. Mol Vis 16:408–415

    PubMed  CAS  Google Scholar 

  3. Allende ML, Yamashita T, Proia RL (2003) G-protein-coupled receptor S1p1 acts within endothelial cells to regulate vascular maturation. Blood 102:3665–3667

    Article  PubMed  CAS  Google Scholar 

  4. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  PubMed  CAS  Google Scholar 

  5. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    Article  PubMed  CAS  Google Scholar 

  6. Balabanov R, Washington R, Wagnerova J, Dore-Duffy P (1996) CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker Ed-2. Microvasc Res 52:127–142

    Article  PubMed  CAS  Google Scholar 

  7. Behl Y, Krothapalli P, Desta T, Dipiazza A, Roy S, Graves DT (2008) Diabetes-enhanced tumor necrosis factor-alpha production promotes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy. Am J Pathol 172:1411–1418

    Article  PubMed  Google Scholar 

  8. Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P et al (2009) Cellular signaling and factors involved in Muller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 28:423–451

    Article  PubMed  CAS  Google Scholar 

  9. Cai J, Kehoe O, Smith GM, Hykin P, Boulton ME (2008) The angiopoietin/Tie-2 system regulates pericyte survival and recruitment in diabetic retinopathy. Invest Ophthalmol Vis Sci 49:2163–2171

    Article  PubMed  Google Scholar 

  10. Cai X, Lin Y, Friedrich CC, Neville C, Pomerantseva I, Sundback CA et al (2009) Bone marrow derived pluripotent cells are pericytes which contribute to vascularization. Stem Cell Rev 5:437–445

    Article  PubMed  Google Scholar 

  11. Cardoso FL, Brites D, Brito MA (2010) Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev 64:328–363

    Article  PubMed  CAS  Google Scholar 

  12. Cogan DG, Toussaint D, Kuwabara T (1961) Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol 66:366–378

    Article  PubMed  CAS  Google Scholar 

  13. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  PubMed  CAS  Google Scholar 

  14. Da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299

    Article  PubMed  Google Scholar 

  15. De Smet F, Segura I, De Bock K, Hohensinner PJ, Carmeliet P (2009) Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arterioscler Thromb Vasc Biol 29:639–649

    Article  PubMed  Google Scholar 

  16. Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16:209–221

    Article  PubMed  CAS  Google Scholar 

  17. Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E et al (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24:909–969

    PubMed  CAS  Google Scholar 

  18. Enge M, Bjarnegard M, Gerhardt H, Gustafsson E, Kalen M, Asker N et al (2002) Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J 21:4307–4316

    Article  PubMed  CAS  Google Scholar 

  19. Farrington-Rock C, Crofts NJ, Doherty MJ, Ashton BA, Griffin-Jones C, Canfield AE (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110:2226–2232

    Article  PubMed  CAS  Google Scholar 

  20. Feng Y, Pfister F, Schreiter K, Wang Y, Stock O, Vom Hagen F et al (2008) Angiopoietin-2 deficiency decelerates age-dependent vascular changes in the mouse retina. Cell Physiol Biochem 21:129–136

    Article  PubMed  CAS  Google Scholar 

  21. Feng Y, Vom Hagen F, Wang Y, Beck S, Schreiter K, Pfister F et al (2009) The absence of angiopoietin-2 leads to abnormal vascular maturation and persistent proliferative retinopathy. Thromb Haemost 102:120–130

    PubMed  CAS  Google Scholar 

  22. Fruttiger M (2002) Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Invest Ophthalmol Vis Sci 43:522–527

    PubMed  Google Scholar 

  23. Gaengel K, Genove G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29:630–638

    Article  PubMed  CAS  Google Scholar 

  24. Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, Clermont A, Leitges M, Marette A et al (2009) Activation of Pkc-delta and Shp-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med 15:1298–1306

    Article  PubMed  CAS  Google Scholar 

  25. Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23

    Article  PubMed  Google Scholar 

  26. Hamilton NB, Attwell D, Hall CN (2010) Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenergetics 2:5

    Article  PubMed  Google Scholar 

  27. Hammes HP, Feng Y, Pfister F, Brownlee M (2011) Diabetic retinopathy: targeting vasoregression. Diabetes 60:9–16

    Article  PubMed  CAS  Google Scholar 

  28. Hammes HP, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q et al (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9:294–299

    Article  PubMed  CAS  Google Scholar 

  29. Hammes HP, Federoff HJ, Brownlee M (1995) Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med 1:527–534

    PubMed  CAS  Google Scholar 

  30. Hammes HP, Lin J, Renner O, Shani M, Lundqvist A, Betsholtz C et al (2002) Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 51:3107–3112

    Article  PubMed  CAS  Google Scholar 

  31. Hammes HP, Lin J, Wagner P, Feng Y, Vom Hagen F, Krzizok T et al (2004) Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes 53:1104–1110

    Article  PubMed  CAS  Google Scholar 

  32. Heglind M, Cederberg A, Aquino J, Lucas G, Ernfors P, Enerback S (2005) Lack of the central nervous system- and neural crest-expressed forkhead gene Foxs1 affects motor function and body weight. Mol Cell Biol 25:5616–5625

    Article  PubMed  CAS  Google Scholar 

  33. Holderfield MT, Hughes CC (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102:637–652

    Article  PubMed  CAS  Google Scholar 

  34. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P et al (1996) Notch3 mutations in cadasil, a hereditary adult-onset condition causing stroke and dementia. Nature 383:707–710

    Article  PubMed  CAS  Google Scholar 

  35. Kern TS, Engerman RL (1995) Vascular lesions in diabetes are distributed non-uniformly within the retina. Exp Eye Res 60:545–549

    Article  PubMed  CAS  Google Scholar 

  36. Kern TS, Tang J, Berkowitz BA (2010) Validation of structural and functional lesions of diabetic retinopathy in mice. Mol Vis 16:2121–2131

    PubMed  CAS  Google Scholar 

  37. Kovac A, Erickson MA, Banks WA (2011) Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and Lrp-1 expression in response to lipopolysaccharide. J Neuroinflammation 8:139

    Article  PubMed  CAS  Google Scholar 

  38. Krenning G, Moonen JR, Van Luyn MJ, Harmsen MC (2008) Vascular smooth muscle cells for use in vascular tissue engineering obtained by endothelial-to-mesenchymal transdifferentiation (EnMT) on collagen matrices. Biomaterials 29:3703–3711

    Article  PubMed  CAS  Google Scholar 

  39. Kuwabara T, Cogan DG (1960) Studies of retinal vascular patterns. I. Normal architecture. Arch Ophthalmol 64:904–911

    Article  PubMed  CAS  Google Scholar 

  40. Lewandowska E, Szpak GM, Wierzba-Bobrowicz T, Modzelewska J, Stepien T, Pasennik E et al (2010) Capillary vessel wall in CADASIL angiopathy. Folia Neuropathol 48:104–115

    PubMed  Google Scholar 

  41. Li F, Lan Y, Wang Y, Wang J, Yang G, Meng F et al (2011) Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev Cell 20:291–302

    Article  PubMed  CAS  Google Scholar 

  42. Li W, Yanoff M, Liu X, Ye X (1997) Retinal capillary pericyte apoptosis in early human diabetic retinopathy. Chin Med J (Engl) 110:659–663

    CAS  Google Scholar 

  43. Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in pdgf-B-deficient mice. Science 277:242–245

    Article  PubMed  CAS  Google Scholar 

  44. Liu H, Zhang W, Kennard S, Caldwell RB, Lilly B (2010) Notch3 is critical for proper angiogenesis and mural cell investment. Circ Res 107:860–870

    Article  PubMed  CAS  Google Scholar 

  45. Ma X, Robin C, Ottersbach K, Dzierzak E (2002) The Ly-6a (Sca-1) Gfp transgene is expressed in All adult mouse hematopoietic stem cells. Stem Cells 20:514–521

    Article  PubMed  CAS  Google Scholar 

  46. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  PubMed  CAS  Google Scholar 

  47. Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27:1248–1258

    Article  PubMed  CAS  Google Scholar 

  48. Mcguire PG, Rangasamy S, Maestas J, Das A (2011) Pericyte-derived sphingosine 1-phosphate induces the expression of adhesion proteins and modulates the retinal endothelial cell barrier. Arterioscler Thromb Vasc Biol 31:e107–115

    Article  PubMed  CAS  Google Scholar 

  49. Mcleod DS, Hasegawa T, Prow T, Merges C, Lutty G (2006) The initial fetal human retinal vasculature develops by vasculogenesis. Dev Dyn 235:3336–3347

    Article  PubMed  CAS  Google Scholar 

  50. Merfeld-Clauss S, Gollahalli N, March KL, Traktuev DO (2010) Adipose tissue progenitor cells directly interact with endothelial cells to induce vascular network formation. Tissue Eng Part A 16:2953–2966

    Article  PubMed  CAS  Google Scholar 

  51. Moonen JR, Krenning G, Brinker MG, Koerts JA, Van Luyn MJ, Harmsen MC (2010) Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny. Cardiovasc Res 86:506–515

    Article  PubMed  CAS  Google Scholar 

  52. Nehls V, Drenckhahn D (1991) Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol 113:147–154

    Article  PubMed  CAS  Google Scholar 

  53. Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of Cns capillary diameter by pericytes. Nature 443:700–704

    Article  PubMed  CAS  Google Scholar 

  54. Perdiguero EG, Galaup A, Durand M, Teillon J, Philippe J, Valenzuela DM et al (2011) Alteration of developmental and pathological retinal angiogenesis in Angptl4-deficient mice. J Biol Chem 286:36841–36851

    Article  PubMed  CAS  Google Scholar 

  55. Pfister F, Feng Y, Vom Hagen F, Hoffmann S, Molema G, Hillebrands JL et al (2008) Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes 57:2495–2502

    Article  PubMed  CAS  Google Scholar 

  56. Puro DG (2007) Physiology and pathobiology of the pericyte-containing retinal microvasculature: new developments. Microcirculation 14:1–10

    Article  PubMed  CAS  Google Scholar 

  57. Rajantie I, Ilmonen M, Alminaite A, Ozerdem U, Alitalo K, Salven P (2004) Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104:2084–2086

    Article  PubMed  CAS  Google Scholar 

  58. Romeo G, Liu WH, Asnaghi V, Kern TS, Lorenzi M (2002) Activation of nuclear factor-kappab induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes 51:2241–2248

    Article  PubMed  CAS  Google Scholar 

  59. Ruchoux MM, Guerouaou D, Vandenhaute B, Pruvo JP, Vermersch P, Leys D (1995) Systemic vascular smooth muscle cell impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Acta Neuropathol 89:500–512

    Article  PubMed  CAS  Google Scholar 

  60. Rucker HK, Wynder HJ, Thomas WE (2000) Cellular mechanisms of CNS pericytes. Brain Res Bull 51:363–369

    Article  PubMed  CAS  Google Scholar 

  61. Sa-Pereira I, Brites D, Brito MA (2012) Neurovascular unit: a focus on pericytes. Mol Neurobiol 45:327–347

    Article  PubMed  CAS  Google Scholar 

  62. Schor AM, Allen TD, Canfield AE, Sloan P, Schor SL (1990) Pericytes derived from the retinal microvasculature undergo calcification in vitro. J Cell Sci 97(Pt 3):449–461

    PubMed  Google Scholar 

  63. Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7:1031–1038

    PubMed  CAS  Google Scholar 

  64. Simonavicius N, Ashenden M, Van Weverwijk A, Lax S, Huso DL, Buckley CD et al (2012) Pericytes promote selective vessel regression to regulate vascular patterning. Blood 120:1516–1527

    Article  PubMed  CAS  Google Scholar 

  65. Sims DE (2000) Diversity within pericytes. Clin Exp Pharmacol Physiol 27:842–846

    Article  PubMed  CAS  Google Scholar 

  66. Sorrell JM, Baber MA, Traktuev DO, March KL, Caplan AI (2011) The creation of an in vitro adipose tissue that contains a vascular-adipocyte complex. Biomaterials 32:9667–9676

    Article  PubMed  Google Scholar 

  67. Stalmans I, Ng YS, Rohan R, Fruttiger M, Bouche A, Yuce A et al (2002) Arteriolar and venular patterning in retinas of mice selectively expressing vegf isoforms. J Clin Invest 109:327–336

    PubMed  CAS  Google Scholar 

  68. Sundberg C, Kowanetz M, Brown LF, Detmar M, Dvorak HF (2002) Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab Invest 82:387–401

    Article  PubMed  CAS  Google Scholar 

  69. Tidhar A, Reichenstein M, Cohen D, Faerman A, Copeland NG, Gilbert DJ et al (2001) A novel transgenic marker for migrating limb muscle precursors and for vascular smooth muscle cells. Dev Dyn 220:60–73

    Article  PubMed  CAS  Google Scholar 

  70. Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R et al (2008) A population of multipotent Cd34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102:77–85

    Article  PubMed  CAS  Google Scholar 

  71. Van Deurs B (1976) Observations on the blood–brain barrier in hypertensive rats, with particular reference to phagocytic pericytes. J Ultrastruct Res 56:65–77

    Article  PubMed  Google Scholar 

  72. Yao D, Taguchi T, Matsumura T, Pestell R, Edelstein D, Giardino I et al (2007) High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of Msin3a. J Biol Chem 282:31038–31045

    Article  PubMed  CAS  Google Scholar 

  73. Yatoh S, Mizutani M, Yokoo T, Kozawa T, Sone H, Toyoshima H et al (2006) Antioxidants and an inhibitor of advanced glycation ameliorate death of retinal microvascular cells in diabetic retinopathy. Diabetes Metab Res Rev 22:38–45

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Hammes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfister, F., Przybyt, E., Harmsen, M.C. et al. Pericytes in the eye. Pflugers Arch - Eur J Physiol 465, 789–796 (2013). https://doi.org/10.1007/s00424-013-1272-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1272-6

Keywords

Navigation