Skip to main content

Advertisement

Log in

Androgens and the cerebrovasculature: modulation of vascular function during normal and pathophysiological conditions

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Sex steroids are commonly known for their contribution to phenotypic as well as biological reproductive sex differences mediated through classical regulation of neuroendocrine loops. However, sex steroids also have considerable impact on physiological function of non-reproductive tissues including the cerebrovasculature. Preclinical studies have shown that endogenous and exogenous administration of sex steroids significantly influences both cerebrovascular tone and brain function under normal conditions and following a pathological insult (e.g., middle cerebral artery occlusion). However, the precise mechanism(s) of how sex steroids modulate vasomotor responses and/or neurological outcomes in vivo is difficult to define since evidence based on both clinical and experimental studies has been shown to be dependent upon several variables including dose, duration of administration, presence of underlying pathologies, species, and sex. While progesterone, testosterone (TEST), and dihydrotestosterone (DHT) have all been investigated for their impact on the cerebral circulation, the effects of 17β-estradiol (E2) have been best characterized. Since recent reviews have highlighted studies reporting the actions of E2 on cerebral vascular function and health, only key points are included in this review. Conversely, less is known about the effect of androgens on the blood vessel wall, particularly in the cerebral circulation. The few studies that do address a role for androgen’s modulation of cerebrovascular function under normal and pathophysiological conditions provide confounding evidence for either beneficial or detrimental effects. Therefore, the focus of this review is to highlight mechanisms associated with TEST, DHT, and its recently recognized androgen metabolite (3β-diol) on cerebrovascular function during healthy and diseased states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahrens-Fath I, Politz O, Geserick C, Haendler B (2005) Androgen receptor function is modulated by the tissue-specific AR45 variant. FEBS J 272(1):74–84. doi:10.1111/j.1742-4658.2004.04395.x

    PubMed  CAS  Google Scholar 

  2. Alexandersen P, Haarbo J, Byrjalsen I, Lawaetz H, Christiansen C (1999) Natural androgens inhibit male atherosclerosis: a study in castrated, cholesterol-fed rabbits. Circ Res 84(7):813–819

    PubMed  CAS  Google Scholar 

  3. Andersson S, Russell DW (1990) Structural and biochemical properties of cloned and expressed human and rat steroid 5 alpha-reductases. Proc Natl Acad Sci U S A 87:3640–3644

    Google Scholar 

  4. Andresen J, Shafi NI, Bryan RM Jr (2006) Endothelial influences on cerebrovascular tone. J Appl Physiol 100(1):318–327. doi:10.1152/japplphysiol.00937.2005

    PubMed  CAS  Google Scholar 

  5. Baeuerle PA, Henkel T (1994) Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12:141–179. doi:10.1146/annurev.iy.12.040194.001041

    PubMed  CAS  Google Scholar 

  6. Beato M, Klug J (2000) Steroid hormone receptors: an update. Hum Reprod Updat 6(2000):225–236

    CAS  Google Scholar 

  7. Belfort MA, Saade GR, Snabes M, Dunn R, Moise KJ Jr, Cruz A, Young R (1995) Hormonal status affects the reactivity of the cerebral vasculature. Am J Obstet Gynecol 172(4 Pt 1):1273–1278

    PubMed  CAS  Google Scholar 

  8. Bennett NC, Gardiner RA, Hooper JD, Johnson DW, Gobe GC (2010) Molecular cell biology of androgen receptor signalling. Int J Biochem Cell Biol 42(6):813–827. doi:10.1016/j.biocel.2009.11.013

    PubMed  CAS  Google Scholar 

  9. Benten WP, Lieberherr M, Giese G, Wrehlke C, Stamm O, Sekeris CE, Mossmann H, Wunderlich F (1999) Functional testosterone receptors in plasma membranes of T cells. FASEB J 13(1):123–133

    PubMed  CAS  Google Scholar 

  10. Benten WP, Lieberherr M, Stamm O, Wrehlke C, Guo Z, Wunderlich F (1999) Testosterone signaling through internalizable surface receptors in androgen receptor-free macrophages. Mol Biol Cell 10(10):3113–3123

    PubMed  CAS  Google Scholar 

  11. Brayden JE, Li Y, Tavares MJ (2012) Purinergic receptors regulate myogenic tone in cerebral parenchymal arterioles. J Cereb Blood Flow Metab. doi:10.1038/jcbfm.2012.169

    PubMed  Google Scholar 

  12. Brayden JE, Nelson MT (1992) Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256(5056):532–535

    PubMed  CAS  Google Scholar 

  13. Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH (2002) EDHF: bringing the concepts together. Trends Pharmacol Sci 23(8):374–380

    PubMed  CAS  Google Scholar 

  14. Cairrao E, Alvarez E, Carvas JM, Santos-Silva AJ, Verde I (2012) Non-genomic vasorelaxant effects of 17beta-estradiol and progesterone in rat aorta are mediated by L-type Ca2+ current inhibition. Acta Pharmacol Sin 33(5):615–624. doi:10.1038/aps.2012.4

    PubMed  CAS  Google Scholar 

  15. Catrina S-B, Okamoto K, Pereira T, Brismar K, Poellinger L (2004) Hyperglycemia regulates hypoxia-inducible factor-1α protein stability and function. Diabetes 53(12):3226–3232. doi:10.2337/diabetes.53.12.3226

    Google Scholar 

  16. Chen F, Knecht K, Birzin E, Fisher J, Wilkinson H, Mojena M, Moreno CT, Schmidt A, Harada S, Freedman LP, Reszka AA (2005) Direct agonist/antagonist functions of dehydroepiandrosterone. Endocrinology 146(11):4568–4576. doi:10.1210/en.2005-0368

    PubMed  CAS  Google Scholar 

  17. Cheng J, Alkayed NJ, Hurn PD (2007) Deleterious effects of dihydrotestosterone on cerebral ischemic injury. J Cereb Blood Flow Metab 27(9):1553–1562

    PubMed  CAS  Google Scholar 

  18. Cheng J, Hu W, Toung TJ, Zhang Z, Parker SM, Roselli CE, Hurn PD (2008) Age-dependent effects of testosterone in experimental stroke. J Cereb Blood Flow Metab 29(3):486–494

    PubMed  Google Scholar 

  19. Cheng J, Uchida M, Zhang W, Grafe MR, Herson PS, Hurn PD (2010) Role of salt-induced kinase 1 in androgen neuroprotection against cerebral ischemia. J Cereb Blood Flow Metab. doi:10.1038/jcbfm.2010.98

    Google Scholar 

  20. Chou TM, Sudhir K, Hutchison SJ, Ko E, Amidon TM, Collins P, Chatterjee K (1996) Testosterone induces dilation of canine coronary conductance and resistance arteries in vivo. Circulation 94 (10):2614–2619

    Google Scholar 

  21. Cipolla MJ, Bullinger LV (2008) Reactivity of brain parenchymal arterioles after ischemia and reperfusion. Microcirculation 15(6):495–501. doi:10.1080/10739680801986742

    PubMed  CAS  Google Scholar 

  22. Cipolla MJ, Curry AB (2002) Middle cerebral artery function after stroke: the threshold duration of reperfusion for myogenic activity. Stroke 32:1658–1664

    Google Scholar 

  23. Cipolla MJ, Godfrey JA, Wiegman MJ (2009) The effect of ovariectomy and estrogen on penetrating brain arterioles and blood–brain barrier permeability. Microcirculation 16(8):685–693. doi:10.3109/10739680903164131

    PubMed  CAS  Google Scholar 

  24. Costarella CE, Stallone JN, Rutecki GW, Whittier FC (1996) Testosterone causes direct relaxation of rat thoracic aorta. J Pharmacol Exp Ther 277(1):34–39

    PubMed  CAS  Google Scholar 

  25. Crofton JT, Share L (1997) Gonadal hormones modulate deoxycorticosterone-salt hypertension in male and female rats. Hypertension 29(1 Pt 2):494–499

    PubMed  CAS  Google Scholar 

  26. De Oliveira DH, Fighera TM, Bianchet LC, Kulak CA, Kulak J (2012) Androgens and bone. Minerva Endocrinol 37(4):305–314

    PubMed  Google Scholar 

  27. Death AK, McGrath KCY, Sader MA, Nakhla S, Jessup W, Handelsman DJ, Celermajer DS (2004) Dihydrotestosterone promotes vascular cell adhesion molecule-1 expression in male human endothelial cells via a nuclear factor-{kappa}B-dependent pathway. Endocrinology 145(4):1889–1897. doi:10.1210/en.2003-0789

    PubMed  CAS  Google Scholar 

  28. Deenadayalu VP, White RE, Stallone JN, Gao X, Garcia AJ (2001) Testosterone relaxes coronary arteries by opening the large-conductance, calcium-activated potassium channel. Am J Physiol Heart Circ Physiol 281(4):H1720–H1727

    PubMed  CAS  Google Scholar 

  29. del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ (2000) Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol 10(1):95–112–1727

    Google Scholar 

  30. del Zoppo GJ, Mabuchi T (2003) Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 23(8):879–894

    PubMed  Google Scholar 

  31. Dessouroux A, Akwa Y, Baulieu EE (2008) DHEA decreases HIF-1[alpha] accumulation under hypoxia in human pulmonary artery cells: potential role in the treatment of pulmonary arterial hypertension. J Steroid Biochem Mol Biol 109(1–2):81–89

    PubMed  CAS  Google Scholar 

  32. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397

    PubMed  CAS  Google Scholar 

  33. Doughty JM, Plane F, Langton PD (1999) Charybdotoxin and apamin block EDHF in rat mesenteric artery if selectively applied to the endothelium. Am J Physiol 276(3 Pt 2):H1107–H1112

    PubMed  CAS  Google Scholar 

  34. Durdiakova J, Ostatnikova D, Celec P (2011) Testosterone and its metabolites--modulators of brain functions. Acta Neurobiol Exp (Wars) 71(4):434–454

    Google Scholar 

  35. Ea Kim L, Javellaud J, Oudart N (1992) Endothelium-dependent relaxation of rabbit middle cerebral artery to a histamine H3-agonist is reduced by inhibitors of nitric oxide and prostacyclin synthesis. Br J Pharmacol 105(1):103–106

    PubMed  CAS  Google Scholar 

  36. Edvinsson L, Owman C, Siesjo B (1976) Physiological role of cerebrovascular sympathetic nerves in the autoregulation of cerebral blood flow. Brain Res 117(3):519–523

    PubMed  CAS  Google Scholar 

  37. Emsley HC, Tyrrell PJ (2002) Inflammation and infection in clinical stroke. J Cereb Blood Flow Metab 22(12):1399–1419. doi:10.1097/00004647-200212000-00001

    PubMed  CAS  Google Scholar 

  38. English KM, Steeds R, Jones TH, Channer KS (1997) Testosterone and coronary heart disease: is there a link? QJM 90(12):787–791

    PubMed  CAS  Google Scholar 

  39. Faraci FM, Heistad DD (1998) Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev 78(1):53–97

    PubMed  CAS  Google Scholar 

  40. Farhat MY, Wolfe R, Vargas R, Foegh ML, Ramwell PW (1995) Effect of testosterone treatment on vasoconstrictor response of left anterior descending coronary artery in male and female pigs. J Cardiovasc Pharmacol 25(3):495–500

    PubMed  CAS  Google Scholar 

  41. Fischer GM, Swain ML (1977) Effect of sex hormones on blood pressure and vascular connective tissue in castrated and noncastrated male rats. Am J Physiol 232(6):H617–H621

    PubMed  CAS  Google Scholar 

  42. Foradori CD, Weiser MJ, Handa RJ (2008) Non-genomic actions of androgens. Front Neuroendocrinol 29(2):169–181. doi:10.1016/j.yfrne.2007.10.005

    PubMed  CAS  Google Scholar 

  43. Fortunati N, Fissore F, Fazzari A, Becchis M, Comba A, Catalano MG, Berta L, Frairia R (1996) Sex steroid binding protein exerts a negative control on estradiol action in MCF-7 cells (human breast cancer) through cyclic adenosine 3',5'-monophosphate and protein kinase A. Endocrinology 137(2):686–692

    PubMed  CAS  Google Scholar 

  44. Fukuda M, Kanda T, Kamide N, Akutsu T, Sakai F (2009) Gender differences in long-term functional outcome after first-ever ischemic stroke. Intern Med 48(12):967–973

    PubMed  Google Scholar 

  45. Gatson JW, Kaur P, Singh M (2006) Dihydrotestosterone differentially modulates the mitogen-activated protein kinase and the phosphoinositide 3-kinase/Akt pathways through the nuclear and novel membrane androgen receptor in C6 cells. Endocrinology 147(4):2028–2034. doi:10.1210/en.2005-1395

    PubMed  CAS  Google Scholar 

  46. Geary GG, Krause DN, Duckles SP (1998) Estrogen reduces myogenic tone through a nitric oxide-dependent mechanism in rat cerebral arteries. Am J Physiol 275(1 Pt 2):H292–H300

    PubMed  CAS  Google Scholar 

  47. Geary GG, Krause DN, Duckles SP (2000) Estrogen reduces mouse cerebral artery tone through endothelial NOS- and cyclooxygenase-dependent mechanisms. Am J Physiol Heart Circ Physiol 279(2):H511–H519

    PubMed  CAS  Google Scholar 

  48. Ghanam K, Ea-Kim L, Javellaud J, Oudart N (2000) Involvement of potassium channels in the protective effect of 17beta-estradiol on hypercholesterolemic rabbit carotid artery. Atherosclerosis 152(1):59–67

    PubMed  CAS  Google Scholar 

  49. Golding EM, Marrelli SP, You J, Bryan RM Jr (2002) Endothelium-derived hyperpolarizing factor in the brain: a new regulator of cerebral blood flow? Stroke 33(3):661–663

    PubMed  Google Scholar 

  50. Gonzales RJ, Ansar S, Duckles SP, Krause DN (2007) Androgenic/estrogenic balance in the male rat cerebral circulation: metabolic enzymes and sex steroid receptors. J Cereb Blood Flow Metab 27(11):1841–1852

    PubMed  CAS  Google Scholar 

  51. Gonzales RJ, Duckles SP, Krause DN (2009) Dihydrotestosterone stimulates cerebrovascular inflammation through NFkappaB, modulating contractile function. J Cereb Blood Flow Metab 29(2):244–253. doi:10.1038/jcbfm.2008.115

    PubMed  CAS  Google Scholar 

  52. Gonzales RJ, Ghaffari AA, Duckles SP, Krause DN (2005) Testosterone treatment increases thromboxane function in rat cerebral arteries. Am J Physiol Heart Circ Physiol 289(2):H578–H585. doi:10.1152/ajpheart.00958.2004

    PubMed  CAS  Google Scholar 

  53. Gonzales RJ, Krause DN, Duckles SP (2004) Testosterone suppresses endothelium-dependent dilation of rat middle cerebral arteries. Am J Physiol Heart Circ Physiol 286(2):H552–H560. doi:10.1152/ajpheart.00663.2003

    PubMed  CAS  Google Scholar 

  54. Grodstein F, Manson JE, Stampfer MJ (2006) Hormone therapy and coronary heart disease: the role of time since menopause and age at hormone initiation. J Womens Health (Larchmt) 15(1):35–44. doi:10.1089/jwh.2006.15.35

    Google Scholar 

  55. Guo J, Krause DN, Horne J, Weiss JH, Li X, Duckles SP (2010) Estrogen-receptor-mediated protection of cerebral endothelial cell viability and mitochondrial function after ischemic insult in vitro. J Cereb Blood Flow Metab 30(3):545–554

    PubMed  CAS  Google Scholar 

  56. Guo S, Stins M, Ning M, Lo EH (2010) Amelioration of inflammation and cytotoxicity by dipyridamole in brain endothelial cells. Cerebrovasc Dis 30(3):290–296. doi:10.1159/000319072

    PubMed  CAS  Google Scholar 

  57. Handa RJ, Pak TR, Kudwa AE, Lund TD, Hinds L (2008) An alternate pathway for androgen regulation of brain function: activation of estrogen receptor beta by the metabolite of dihydrotestosterone, 5alpha-androstane-3beta,17beta-diol. Horm Behav 53(5):741–752. doi:10.1016/j.yhbeh.2007.09.012

    PubMed  CAS  Google Scholar 

  58. Handa RJ, Stadelman HL, Resko JA (1987) Effect of estrogen on androgen receptor dynamics in female rat pituitary. Endocrinology 121(1):84–89

    PubMed  CAS  Google Scholar 

  59. Harada N, Sasano H, Murakami H, Ohkuma T, Nagura H, Takagi Y (1999) Localized expression of aromatase in human vascular tissues. Circ Res 84(11):1285–1291

    PubMed  CAS  Google Scholar 

  60. Harder DR (1987) Pressure-induced myogenic activation of cat cerebral arteries is dependent on intact endothelium. Circ Res 60(1):102–107

    PubMed  CAS  Google Scholar 

  61. Hawk T, Zhang YQ, Rajakumar G, Day AL, Simpkins JW (1998) Testosterone increases and estradiol decreases middle cerebral artery occlusion lesion size in male rats. Brain Res 796(1–2):296–298

    PubMed  CAS  Google Scholar 

  62. Heinlein CA, Chang C (2002) The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 16(10):2181–2187

    PubMed  CAS  Google Scholar 

  63. Herman SM, Robinson JT, McCredie RJ, Adams MR, Boyer MJ, Celermajer DS (1997) Androgen deprivation is associated with enhanced endothelium-dependent dilatation in adult men. Arterioscler Thromb Vasc Biol 17(10):2004–2009

    PubMed  CAS  Google Scholar 

  64. Higashiura K, Mathur RS, Halushka PV (1997) Gender-related differences in androgen regulation of thromboxane A2 receptors in rat aortic smooth-muscle cells. J Cardiovasc Pharmacol 29(3):311–315

    PubMed  CAS  Google Scholar 

  65. Hurn PD, Littleton-Kearney MT, Kirsch JR, Dharmarajan AM, Traystman RJ (1995) Postischemic cerebral blood flow recovery in the female: effect of 17 beta-estradiol. J Cereb Blood Flow Metab 15(4):666–672. doi:10.1038/jcbfm.1995.83

    PubMed  CAS  Google Scholar 

  66. Hurn PD, Macrae IM (2000) Estrogen as a neuroprotectant in stroke. J Cereb Blood Flow Metab 20(4):631–652. doi:10.1097/00004647-200004000-00001

    PubMed  CAS  Google Scholar 

  67. Iadecola C, Goldman SS, Harder DR, Heistad DD, Katusic ZS, Moskowitz MA, Simard JM, Sloan MA, Traystman RJ, Velletri PA (2006) Recommendations of the National Heart, Lung, and Blood Institute working group on cerebrovascular biology and disease. Stroke 37(6):1578–1581. doi:10.1161/01.STR.0000221297.57305.8a

    PubMed  Google Scholar 

  68. Jin Y, Penning TM (2001) Steroid 5alpha-reductases and 3alpha-hydroxysteroid dehydrogenases: key enzymes in androgen metabolism. Best Pract Res Clin Endocrinol Metab 15(1):79–94. doi:10.1053/beem.2001.0120

    PubMed  CAS  Google Scholar 

  69. Jones RD, Hugh Jones T, Channer KS (2004) The influence of testosterone upon vascular reactivity. Eur J Endocrinol 151(1):29–37

    PubMed  CAS  Google Scholar 

  70. Kempermann G, Neumann H (2003) Neuroscience. Microglia: the enemy within? Science 302(5651):1689–1690. doi:10.1126/science.1092864

    PubMed  CAS  Google Scholar 

  71. Komesaroff PA, Fullerton M, Esler MD, Dart A, Jennings G, Sudhir K (2001) Low-dose estrogen supplementation improves vascular function in hypogonadal men. Hypertension 38(5):1011–1016

    PubMed  CAS  Google Scholar 

  72. Konoplya EF, Popoff EH (1992) Identification of the classical androgen receptor in male rat liver and prostate cell plasma membranes. Int J Biochem 24(12):1979–1983

    PubMed  CAS  Google Scholar 

  73. Krause DN, Duckles SP, Pelligrino DA (2006) Influence of sex steroid hormones on cerebrovascular function. J Appl Physiol 101(4):1252–1261. doi:10.1152/japplphysiol.01095.2005

    PubMed  CAS  Google Scholar 

  74. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138(3):863–870

    PubMed  CAS  Google Scholar 

  75. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 93(12):5925–5930

    PubMed  CAS  Google Scholar 

  76. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139(10):4252–4263

    PubMed  CAS  Google Scholar 

  77. Lephart ED, Lund TD, Horvath TL (2001) Brain androgen and progesterone metabolizing enzymes: biosynthesis, distribution and function. Brain Res Brain Res Rev 37(1–3):25–37

    PubMed  CAS  Google Scholar 

  78. Li S, Li X, Li J, Deng X, Li Y (2007) Inhibition of oxidative-stress-induced platelet aggregation by androgen at physiological levels via its receptor is associated with the reduction of thromboxane A2 release from platelets. Steroids 72(13):875–880. doi:10.1016/j.steroids.2007.07.007

    PubMed  CAS  Google Scholar 

  79. Li ZK, Shen L, Ke H, Li F, Ni LM, Li QH (2008) Effects of androgen on the expression of brain aromatase cytopigment and nerve growth factor in neonatal rats with hypoxic-ischemic brain damage. Zhongguo Dang Dai Er Ke Za Zhi 10(4):441–446

    PubMed  CAS  Google Scholar 

  80. Littleton-Kearney MT, Agnew DM, Traystman RJ, Hurn PD (2000) Effects of estrogen on cerebral blood flow and pial microvasculature in rabbits. Am J Physiol Heart Circ Physiol 279(3):H1208–H1214

    PubMed  CAS  Google Scholar 

  81. Liu PY, Death AK, Handelsman DJ (2003) Androgens and cardiovascular disease. Endocr Rev 24(3):313–340

    PubMed  CAS  Google Scholar 

  82. Luksha L, Poston L, Gustafsson JA, Hultenby K, Kublickiene K (2006) The oestrogen receptor beta contributes to sex related differences in endothelial function of murine small arteries via EDHF. J Physiol 577(Pt 3):945–955. doi:10.1113/jphysiol.2006.121939

    PubMed  CAS  Google Scholar 

  83. Maddahi A, Edvinsson L (2010) Cerebral ischemia induces microvascular pro-inflammatory cytokine expression via the MEK/ERK pathway. J Neuroinflammation 7(1):14

    PubMed  Google Scholar 

  84. Malkin CJ, Jones RD, Jones TH, Channer KS (2006) Effect of testosterone on ex vivo vascular reactivity in man. Clin Sci 111(4):265–274. doi:10.1042/cs20050354

    PubMed  CAS  Google Scholar 

  85. Malkin CJ, Pugh PJ, Jones RD, Jones TH, Channer KS (2003) Testosterone as a protective factor against atherosclerosis–immunomodulation and influence upon plaque development and stability. J Endocrinol 178(3):373–380. doi:10.1677/joe.0.1780373

    PubMed  CAS  Google Scholar 

  86. Malkin CJ, Pugh PJ, Jones RD, Kapoor D, Channer KS, Jones TH (2004) The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab 89(7):3313–3318. doi:10.1210/jc.2003-031069

    PubMed  CAS  Google Scholar 

  87. Malkin CJ, Pugh PJ, Morris PD, Asif S, Jones TH, Channer KS (2010) Low serum testosterone and increased mortality in men with coronary heart disease. Heart 96(22):1821–1825. doi:10.1136/hrt.2010.195412

    PubMed  CAS  Google Scholar 

  88. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83(6):835–839

    PubMed  CAS  Google Scholar 

  89. Marrachelli VG, Miranda FJ, Centeno JM, Salom JB, Torregrosa G, Jover-Mengual T, Perez AM, Moro MA, Alborch E (2010) Role of NO-synthases and cyclooxygenases in the hyperreactivity of male rabbit carotid artery to testosterone under experimental diabetes. Pharmacol Res 61(1):62–70. doi:10.1016/j.phrs.2009.06.008

    PubMed  CAS  Google Scholar 

  90. Marwah P, Marwah A, Lardy HA, Miyomoto H, Chwasnshang C (2006) C19-steroids as androgen receptor modulators: Design, discovery, and structure activity relationship fo new steroidal androgen receptor antagonists. Bioorg Med Chem 14:5933–5947

    PubMed  CAS  Google Scholar 

  91. Masuda A, Mathur R, Halushka PV (1991) Testosterone increases thromboxane A2 receptors in cultured rat aortic smooth muscle cells. Circ Res 69(3):638–643

    PubMed  CAS  Google Scholar 

  92. McCrohon JA, Jessup W, Handelsman DJ, Celermajer DS (1999) Androgen exposure increases human monocyte adhesion to vascular endothelium and endothelial cell expression of vascular cell adhesion molecule-1. Circulation 99(17):2317–2322

    PubMed  CAS  Google Scholar 

  93. McCullough LD, Blizzard K, Simpson ER, Oz OK, Hurn PD (2003) Aromatase cytochrome P450 and extragonadal estrogen play a role in ischemic neuroprotection. J Neurosci 23(25):8701–8705

    PubMed  CAS  Google Scholar 

  94. McNeill AM, Kim N, Duckles SP, Krause DN, Kontos HA (1999) Chronic estrogen treatment increases levels of endothelial nitric oxide synthase protein in rat cerebral microvessels. Stroke 30(10):2186–2190

    PubMed  CAS  Google Scholar 

  95. McNeill AM, Zhang C, Stanczyk FZ, Duckles SP, Krause DN (2002) Estrogen increases endothelial nitric oxide synthase via estrogen receptors in rat cerebral blood vessels: effect preserved after concurrent treatment with medroxyprogesterone acetate or progesterone. Stroke 33(6):1685–1691

    PubMed  CAS  Google Scholar 

  96. Meininger GA, Davis MJ (1992) Cellular mechanisms involved in the vascular myogenic response. Am J Physiol 263(3 Pt 2):H647–H659

    PubMed  CAS  Google Scholar 

  97. Mendelsohn ME, Karas RH (1999) The protective effects of estrogen on the cardiovascular system. N Engl J Med 340(23):1801–1811. doi:10.1056/NEJM199906103402306-659

    PubMed  CAS  Google Scholar 

  98. Michels G, Hoppe UC (2008) Rapid actions of androgens. Front Neuroendocrinol 29(2):182–198

    PubMed  CAS  Google Scholar 

  99. Miller VM, Duckles SP (2008) Vascular actions of estrogens: functional implications. Pharmacol Rev 60(2):210–241. doi:10.1124/pr.107.08002

    PubMed  CAS  Google Scholar 

  100. Miller WL (1988) Molecular biology of steroid hormone synthesis. Endocr Rev 9(3):295–318

    PubMed  CAS  Google Scholar 

  101. Mishra RG, Stanczyk FZ, Burry KA, Oparil S, Katzenellenbogen BS, Nealen ML, Katzenellenbogen JA, Hermsmeyer RK (2006) Metabolite ligands of estrogen receptor-{beta} reduce primate coronary hyperreactivity. Am J Physiol Heart Circ Physiol 290(1):H295–H303. doi:10.1152/ajpheart.00468.2005

    PubMed  CAS  Google Scholar 

  102. Mizukami Y (2010) In vivo functions of GPR30/GPER-1, a membrane receptor for estrogen: from discovery to functions in vivo. Endocr J 57(2):101–107

    PubMed  CAS  Google Scholar 

  103. Nakhla AM, Rosner W (1996) Stimulation of prostate cancer growth by androgens and estrogens through the intermediacy of sex hormone-binding globulin. Endocrinology 137(10):4126–4129

    PubMed  CAS  Google Scholar 

  104. Navarro-Dorado J, Orensanz LM, Recio P, Bustamante S, Benedito S, Martinez AC, Garcia-Sacristan A, Prieto D, Hernandez M (2008) Mechanisms involved in testosterone-induced vasodilatation in pig prostatic small arteries. Life Sci 83(15–16):569–573. doi:10.1016/j.lfs.2008.08.009

    PubMed  CAS  Google Scholar 

  105. Nevo O, Soustiel JF, Thaler I (2007) Cerebral blood flow is increased during controlled ovarian stimulation. Am J Physiol Heart Circ Physiol 293(6):H3265–H3269. doi:10.1152/ajpheart.00633.2007

    PubMed  CAS  Google Scholar 

  106. Norata GD, Cattaneo P, Poletti A, Catapano AL (2010) The androgen derivative 5alpha-androstane-3beta,17beta-diol inhibits tumor necrosis factor alpha and lipopolysaccharide induced inflammatory response in human endothelial cells and in mice aorta. Atherosclerosis 212(1):100–106. doi:10.1016/j.atherosclerosis.2010.05.015

    PubMed  CAS  Google Scholar 

  107. Norata GD, Tibolla G, Seccomandi PM, Poletti A, Catapano AL (2006) Dihydrotestosterone decreases tumor necrosis factor-alpha and lipopolysaccharide-induced inflammatory response in human endothelial cells. J Clin Endocrinol Metab 91(2):546–554. doi:10.1210/jc.2005-1664

    PubMed  CAS  Google Scholar 

  108. Normington K, Russell DW (1992) Tissue distribution and kinetic characteristics of rat steroid 5 alpha-reductase isozymes. Evidence for distinct physiological functions. J Biol Chem 267(27):19548–19554

    PubMed  CAS  Google Scholar 

  109. Ono H, Sasaki Y, Bamba E, Seki J, Giddings JC, Yamamoto J (2002) Cerebral thrombosis and microcirculation of the rat during the oestrous cycle and after ovariectomy. Clin Exp Pharmacol Physiol 29(1–2):73–78

    PubMed  CAS  Google Scholar 

  110. Orshal JM, Khalil RA (2004) Gender, sex hormones, and vascular tone. Am J Physiol Regul Integr Comp Physiol 286(2):R233–R249. doi:10.1152/ajpregu.00338.2003

    PubMed  CAS  Google Scholar 

  111. Osol G, Brekke JF, McElroy-Yaggy K, Gokina NI (2002) Myogenic tone, reactivity, and forced dilatation: a three-phase model of in vitro arterial myogenic behavior. Am J Physiol Heart Circ Physiol 283(6):H2260–H2267. doi:10.1152/ajpheart.00634.2002

    PubMed  CAS  Google Scholar 

  112. Osol G, Laher I, Cipolla M (1991) Protein kinase C modulates basal myogenic tone in resistance arteries from the cerebral circulation. Circ Res 68(2):359–367

    PubMed  CAS  Google Scholar 

  113. Ospina JA, Duckles SP, Krause DN (2003) 17beta-estradiol decreases vascular tone in cerebral arteries by shifting COX-dependent vasoconstriction to vasodilation. Am J Physiol Heart Circ Physiol 285(1):H241–H250. doi:10.1152/ajpheart.00018.2003

    PubMed  CAS  Google Scholar 

  114. Osterlund KL, Handa RJ, Gonzales RJ (2010) Dihydrotestosterone alters cyclooxygenase-2 levels in human coronary artery smooth muscle cells. Am J Physiol Endocrinol Metab 298(4):E838–E845. doi:10.1152/ajpendo.00693.2009

    PubMed  CAS  Google Scholar 

  115. Pan Y, Zhang H, Acharya AB, Patrick PH, Oliver D, Morley JE (2005) Effect of testosterone on functional recovery in a castrate male rat stroke model. Brain Res 1043(1–2):195–204

    PubMed  CAS  Google Scholar 

  116. Patkar S, Farr TD, Cooper E, Dowell FJ, Carswell HV (2011) Differential vasoactive effects of oestrogen, oestrogen receptor agonists and selective oestrogen receptor modulators in rat middle cerebral artery. Neurosci Res 71(1):78–84. doi:10.1016/j.neures.2011.05.006

    PubMed  CAS  Google Scholar 

  117. Pelligrino DA, Galea E (2001) Estrogen and cerebrovascular physiology and pathophysiology. Jpn J Pharmacol 86(2):137–158

    PubMed  CAS  Google Scholar 

  118. Pelligrino DA, Ye S, Tan F, Santizo RA, Feinstein DL, Wang Q (2000) Nitric-oxide-dependent pial arteriolar dilation in the female rat: effects of chronic estrogen depletion and repletion. Biochem Biophys Res Commun 269(1):165–171. doi:10.1006/bbrc.2000.2206

    PubMed  CAS  Google Scholar 

  119. Penotti M, Sironi L, Cannata L, Vigano P, Casini A, Gabrielli L, Vignali M (2001) Effects of androgen supplementation of hormone replacement therapy on the vascular reactivity of cerebral arteries. Fertil Steril 76(2):235–240

    PubMed  CAS  Google Scholar 

  120. Perusquia M, Espinoza J, Montano LM, Stallone JN (2012) Regional differences in the vasorelaxing effects of testosterone and its 5-reduced metabolites in the canine vasculature. Vasc Pharmacol 56(3–4):176–182. doi:10.1016/j.vph.2012.01.008

    CAS  Google Scholar 

  121. Perusquia M, Hernandez R, Morales MA, Campos MG, Villalon CM (1996) Role of endothelium in the vasodilating effect of progestins and androgens on the rat thoracic aorta. Gen Pharmacol 27(1):181–185

    PubMed  CAS  Google Scholar 

  122. Perusquia M, Navarrete E, Gonzalez L, Villalon CM (2007) The modulatory role of androgens and progestins in the induction of vasorelaxation in human umbilical artery. Life Sci 81(12):993–1002. doi:10.1016/j.lfs.2007.07.024

    PubMed  CAS  Google Scholar 

  123. Petersson J, Zygmunt PM, Hogestatt ED (1997) Characterization of the potassium channels involved in EDHF-mediated relaxation in cerebral arteries. Br J Pharmacol 120(7):1344–1350. doi:10.1038/sj.bjp.0701032

    PubMed  CAS  Google Scholar 

  124. Petrea RE, Beiser AS, Seshadri S, Kelly-Hayes M, Kase CS, Wolf PA (2009) Gender differences in stroke incidence and poststroke disability in the framingham heart study. Stroke 40(4):1032–1037. doi:10.1161/strokeaha.108.542894

    PubMed  Google Scholar 

  125. Ramirez-Rosas MB, Cobos-Puc LE, Munoz-Islas E, Gonzalez-Hernandez A, Sanchez-Lopez A, Villalon CM, Maassenvandenbrink A, Centurion D (2011) Pharmacological evidence that Ca(2)+ channels and, to a lesser extent, K+ channels mediate the relaxation of testosterone in the canine basilar artery. Steroids 76(4):409–415. doi:10.1016/j.steroids.2010.12.012

    PubMed  CAS  Google Scholar 

  126. Razmara A, Krause DN, Duckles SP (2005) Testosterone augments endotoxin-mediated cerebrovascular inflammation in male rats. Am J Physiol Heart Circ Physiol 289(5):H1843–H1850. doi:10.1152/ajpheart.00465.2005

    PubMed  CAS  Google Scholar 

  127. Reckelhoff JF, Zhang H, Granger JP (1998) Testosterone exacerbates hypertension and reduces pressure-natriuresis in male spontaneously hypertensive rats. Hypertension 31(1 Pt 2):435–439

    PubMed  CAS  Google Scholar 

  128. Roselli CE, Horton LE, Resko JA (1985) Distribution and regulation of aromatase activity in the rat hypothalamus and limbic system. Endocrinology 117(6):2471–2477

    PubMed  CAS  Google Scholar 

  129. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA 288(3):321–333

    PubMed  CAS  Google Scholar 

  130. Rossouw JE, Prentice RL, Manson JE, Wu L, Barad D, Barnabei VM, Ko M, LaCroix AZ, Margolis KL, Stefanick ML (2007) Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA 297(13):1465–1477. doi:10.1001/jama.297.13.1465

    PubMed  CAS  Google Scholar 

  131. Sader MA, McCredie RJ, Griffiths KA, Wishart SM, Handelsman DJ, Celermajer DS (2001) Oestradiol improves arterial endothelial function in healthy men receiving testosterone. Clin Endocrinol (Oxf) 54(2):175–181

    CAS  Google Scholar 

  132. Saijo K, Collier Jana G, Li Andrew C, Katzenellenbogen John A, Glass Christopher K (2011) An ADIOL-ER[beta]-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. Cell 145(4):584–595

    PubMed  CAS  Google Scholar 

  133. Santizo RA, Anderson S, Ye S, Koenig HM, Pelligrino DA (2000) Effects of estrogen on leukocyte adhesion after transient forebrain ischemia. Stroke 31(9):2231–2235

    PubMed  CAS  Google Scholar 

  134. Schreihofer DA, Deutsch C, Lovekamp-Swan T, Sullivan JC, Dorrance AM (2010) Effect of high soy diet on the cerebrovasculature and endothelial nitric oxide synthase in the ovariectomized rat. Vasc Pharmacol 52(5–6):236–242. doi:10.1016/j.vph.2010.02.003

    CAS  Google Scholar 

  135. Shimada Y, Yoritaka A, Tanaka Y, Miyamoto N, Ueno Y, Hattori N, Takao U (2012) Cerebral infarction in a young man using high-dose anabolic steroids. J Stroke Cerebrovasc Dis 21(8):906.e909–906–911. doi:10.1016/j.jstrokecerebrovasdis.2011.07.013

  136. Simpson E (2004) Aromatase: biologic relevance of tissue-specific expression. Semin Reprod Med 22(1):11–23

    PubMed  CAS  Google Scholar 

  137. Singh H, Schwartzman ML (2008) Renal vascular cytochrome P450-derived eicosanoids in androgen-induced hypertension. Pharmacol Rep 60(1):29–37

    PubMed  CAS  Google Scholar 

  138. Sinha-Hikim I, Taylor WE, Gonzalez-Cadavid NF, Zheng W, Bhasin S (2004) Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment. J Clin Endocrinol Metab 89(10):5245–5255. doi:10.1210/jc.2004-0084

    PubMed  CAS  Google Scholar 

  139. Skarsgard P, van Breemen C, Laher I (1997) Estrogen regulates myogenic tone in pressurized cerebral arteries by enhanced basal release of nitric oxide. Am J Physiol 273(5 Pt 2):H2248–H2256

    PubMed  CAS  Google Scholar 

  140. Snyder GD, Krishna UM, Falck JR, Spector AA (2002) Evidence for a membrane site of action for 14,15-EET on expression of aromatase in vascular smooth muscle. Am J Physiol Heart Circ Physiol 283(5):H1936–H1942. doi:10.1152/ajpheart.00321.2002

    PubMed  CAS  Google Scholar 

  141. Steckelbroeck S, Jin Y, Gopishetty S, Oyesanmi B, Penning TM (2004) Human cytosolic 3alpha-hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3beta-hydroxysteroid dehydrogenase activity: implications for steroid hormone metabolism and action. J Biol Chem 279(11):10784–10795. doi:10.1074/jbc.M313308200

    PubMed  CAS  Google Scholar 

  142. Stirone C, Chu Y, Sunday L, Duckles SP, Krause DN (2003) 17 Beta-estradiol increases endothelial nitric oxide synthase mRNA copy number in cerebral blood vessels: quantification by real-time polymerase chain reaction. Eur J Pharmacol 478(1):35–38

    PubMed  CAS  Google Scholar 

  143. Stirone C, Duckles SP, Krause DN (2003) Multiple forms of estrogen receptor-alpha in cerebral blood vessels: regulation by estrogen. Am J Physiol Endocrinol Metab 284(1):E184–E192. doi:10.1152/ajpendo.00165.2002

    PubMed  CAS  Google Scholar 

  144. Stirone C, Duckles SP, Krause DN, Procaccio V (2005) Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels. Mol Pharmacol 68(4):959–965. doi:10.1124/mol.105.014662

    PubMed  CAS  Google Scholar 

  145. Sundin M, Warner M, Haaparanta T, Gustafsson JA (1987) Isolation and catalytic activity of cytochrome P-450 from ventral prostate of control rats. J Biol Chem 262(25):12293–12297

    PubMed  Google Scholar 

  146. Tep-areenan P, Kendall DA, Randall MD (2002) Testosterone-induced vasorelaxation in the rat mesenteric arterial bed is mediated predominantly via potassium channels. Br J Pharmacol 135(3):735–740. doi:10.1038/sj.bjp.0704522

    PubMed  CAS  Google Scholar 

  147. Torn S, Nokelainen P, Kurkela R, Pulkka A, Menjivar M, Ghosh S, Coca-Prados M, Peltoketo H, Isomaa V, Vihko P (2003) Production, purification, and functional analysis of recombinant human and mouse 17beta-hydroxysteroid dehydrogenase type 7. Biochem Biophys Res Commun 305(1):37–45

    PubMed  CAS  Google Scholar 

  148. Tyagi RK, Lavrovsky Y, Ahn SC, Song CS, Chatterjee B, Roy AK (2000) Dynamics of intracellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Mol Endocrinol 14(8):1162–1174

    PubMed  CAS  Google Scholar 

  149. Uchida M, Palmateer JM, Herson PS, Devries AC, Cheng J, Hurn PD (2009) Dose-dependent effects of androgens on outcome after focal cerebral ischemia in adult male mice. J Cereb Blood Flow Metab. doi:10.1038/jcbfm.2009.60

    PubMed  Google Scholar 

  150. Vinall PE, Simeone FA (1986) Effects of oxygen and glucose deprivation on vasoactivity in isolated bovine middle cerebral arteries. Stroke 17(5):970–975

    PubMed  CAS  Google Scholar 

  151. Wang C, Cunningham G, Dobs A, Iranmanesh A, Matsumoto AM, Snyder PJ, Weber T, Berman N, Hull L, Swerdloff RS (2004) Long-term testosterone gel (AndroGel) treatment maintains beneficial effects on sexual function and mood, lean and fat mass, and bone mineral density in hypogonadal men. J Clin Endocrinol Metab 89(5):2085–2098

    PubMed  CAS  Google Scholar 

  152. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184(1–2):53–68

    PubMed  CAS  Google Scholar 

  153. Wassertheil-Smoller S, Hendrix SL, Limacher M, Heiss G, Kooperberg C, Baird A, Kotchen T, Curb JD, Black H, Rossouw JE, Aragaki A, Safford M, Stein E, Laowattana S, Mysiw WJ (2003) Effect of estrogen plus progestin on stroke in postmenopausal women: the Women's Health Initiative: a randomized trial. JAMA 289(20):2673–2684. doi:10.1001/jama.289.20.2673

    PubMed  CAS  Google Scholar 

  154. Watanabe Y, Littleton-Kearney MT, Traystman RJ, Hurn PD (2001) Estrogen restores postischemic pial microvascular dilation. Am J Physiol Heart Circ Physiol 281(1):H155–H160

    PubMed  CAS  Google Scholar 

  155. Webb CM, Adamson DL, de Zeigler D, Collins P (1999) Effect of acute testosterone on myocardial ischemia in men with coronary artery disease. Am J Cardiol 83(3):437–439

    PubMed  CAS  Google Scholar 

  156. Webb CM, McNeill JG, Hayward CS, de Zeigler D, Collins P (1999) Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. Circulation 100(16):1690–1696

    PubMed  CAS  Google Scholar 

  157. Weihua Z, Lathe R, Warner M, Gustafsson JA (2002) An endocrine pathway in the prostate, ERbeta, AR, alpha-androstane-3beta,17beta-diol, and CYP7B1, regulates prostate growth. Proc Natl Acad Sci U S A 99(21):13589–13594. doi:10.1073/pnas.162477299

    Google Scholar 

  158. Weihua Z, Makela S, Andersson LC, Salmi S, Saji S, Webster JI, Jensen EV, Nilsson S, Warner M, Gustafsson JA (2001) A role for estrogen receptor beta in the regulation of growth of the ventral prostate. Proc Natl Acad Sci U S A 98(11):6330–6335. doi:10.1073/pnas.111150898

    PubMed  CAS  Google Scholar 

  159. Weiss B, Faus H, Haendler B (2007) Phylogenetic conservation of the androgen receptor AR45 variant form in placental mammals. Gene 399(2):105–111. doi:10.1016/j.gene.2007.04.037

    PubMed  CAS  Google Scholar 

  160. Weiyu Teng LW, Xue W, Guan C (2009) Activation of TLR4-Mediated NFκB Signaling in Hemorrhagic Brain in Rats. Mediat Inflamm. doi:10.1155/2009/473276

    Google Scholar 

  161. Writing Group Members, Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott M, Meigs J, Mozaffarian D, Nichol G, O'Donnell C, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steinberger J, Thom T, Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, Hong Y, American Heart Association Statistics C, Stroke Statistics S (2009) Heart Disease and Stroke Statistics--2009 Update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119(3):e21–e181. doi:10.1161/circulationaha.108.191261

    PubMed  Google Scholar 

  162. Xing D, Feng W, Miller AP, Weathington NM, Chen Y-F, Novak L, Blalock JE, Oparil S (2007) Estrogen modulates TNF-{alpha}-induced inflammatory responses in rat aortic smooth muscle cells through estrogen receptor-beta activation. Am J Physiol Heart Circ Physiol 292(6):H2607–H2612. doi:10.1152/ajpheart.01107.2006

    PubMed  CAS  Google Scholar 

  163. Xu J, He L, Ahmed SH, Chen S-W, Goldberg MP, Beckman JS, Hsu CY, Iadecola C (2000) Oxygen-glucose deprivation induces inducible nitric oxide synthase and nitrotyrosine expression in cerebral endothelial cells editorial comment. Stroke 31(7):1744–1751

    PubMed  CAS  Google Scholar 

  164. Yang S-H, Perez E, Cutright J, Liu R, He Z, Day AL, Simpkins JW (2002) Testosterone increases neurotoxicity of glutamate in vitro and ischemia-reperfusion injury in an animal model. J Appl Physiol 92(1):195–201

    PubMed  CAS  Google Scholar 

  165. Yeap BB (2010) Androgens and cardiovascular disease. Curr Opin Endocrinol Diabetes Obes 17(3):269–276. doi:10.1097/MED.0b013e3283383031

    PubMed  CAS  Google Scholar 

  166. Yeap BB, Hyde Z, Almeida OP, Norman PE, Chubb SAP, Jamrozik K, Flicker L, Hankey GJ (2009) Lower testosterone levels predict incident stroke and transient ischemic attack in older men. J Clin Endocrinol Metab 94(7):2353–2359. doi:10.1210/jc.2008-2416

    PubMed  CAS  Google Scholar 

  167. Yue P, Chatterjee K, Beale C, Poole-Wilson PA, Collins P (1995) Testosterone relaxes rabbit coronary arteries and aorta. Circulation 91(4):1154–1160

    PubMed  CAS  Google Scholar 

  168. Zuloaga KL, Gonzales RJ (2011) Dihydrotestosterone attenuates hypoxia inducible factor-1alpha and cyclooxygenase-2 in cerebral arteries during hypoxia or hypoxia with glucose deprivation. Am J Physiol Heart Circ Physiol 301(5):H1882–H1890. doi:10.1152/ajpheart.00446.2011

    PubMed  CAS  Google Scholar 

  169. Zuloaga KL, O'Connor DT, Handa RJ, Gonzales RJ (2012) Estrogen receptor beta dependent attenuation of cytokine-induced cyclooxygenase-2 by androgens in human brain vascular smooth muscle cells and rat mesenteric arteries. Steroids 77(8–9):835–844. doi:10.1016/j.steroids.2012.04.013

    PubMed  CAS  Google Scholar 

  170. Zuloaga KL, Swift SN, Gonzales RJ, Wu TJ, Handa RJ (2012) The androgen metabolite, 5alpha-androstane-3beta,17beta-diol, decreases cytokine-induced cyclooxygenase-2, vascular cell adhesion molecule-1 expression, and P-glycoprotein expression in male human brain microvascular endothelial cells. Endocrinology 153(12):5949–5960. doi:10.1210/en.2012-1316

    Google Scholar 

Download references

Acknowledgments

The data presented in this review were supported by funding from the American Heart Association and the University of Arizona Sarver Heart Center affiliates for their generous donations: Alliance Beverage Foundation and Mr. Jim and Mrs. Ann Madson. The author would like to also acknowledge Dr. Taben Mary Hale, Mrs. Lakshmi Madhavpeddi, and Mr. Devin O’Connor for their significant editorial contributions.

Conflict of interest

The author has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rayna J. Gonzales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzales, R.J. Androgens and the cerebrovasculature: modulation of vascular function during normal and pathophysiological conditions. Pflugers Arch - Eur J Physiol 465, 627–642 (2013). https://doi.org/10.1007/s00424-013-1267-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1267-3

Keywords

Navigation