Skip to main content

Advertisement

Log in

Class 3 inhibition of hERG K+ channel by caffeic acid phenethyl ester (CAPE) and curcumin

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Human ether-á-go-go-related gene (hERG) K+ channel current (I hERG ) is inhibited by various compounds and genetic mutations, potentially resulting in cardiac arrhythmia. Here, we investigated effects of caffeic acid phenethyl ester (CAPE) and curcumin, two natural anti-inflammatory polyphenols, on I hERG in HEK-293 cells overexpressed with hERG. CAPE dose-dependently decreased repolarization tail current of hERG (I hERG,tail; IC50, 10.6 ± 0.5 μM). CAPE also shifted half-activation voltage (V 1/2) to the left (from −17.5 to −26.5 mV) and accelerated activation and inactivation kinetics. The CAPE inhibition of I hERG,tail was not attenuated in the pore-blocker site mutants of hERG (Y652A and F656A). A point mutation of Cys723 (C723S) mimicked the effects of CAPE and caused a left shift of V 1/2 and acceleration of I hERG,tail deactivation. However, I hERG,tail inhibition by CAPE was still observed in C723S. Taken together, CAPE inhibits hERG channel by class 3 mechanism, i.e., modification of gating, not by blocking the pore. Curcumin induced changes of I hERG similar to those of CAPE, while additional interaction with pore-blocking sites was suggested from attenuated I hERG,tail inhibition in Y652A and F656A. Interestingly, I hERG induced by human action potential voltage clamp was increased by CAPE while decreased by curcumin. Mathematical simulation of action potential derived from the experimental results of CAPE and curcumin supports that CAPE, but not curcumin, would induce shortening of AP duration by facilitation of I hERG . The above results revealed intriguing roles of Cys723 in hERG kinetics and suggested that conventional drug screening by using step pulse protocol for I hERG,tail would overlook the hERG kinetic modulations that could compensate the decrease of I hERG,tail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Anderson CL, Delisle BP, Anson BD, Kilby JA, Will ML, Tester DJ, Gong Q, Zhou Z, Ackerman MJ, January CT (2006) Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 113:365–373

    Article  PubMed  CAS  Google Scholar 

  2. Berube J, Caouette D, Daleau P (2001) Hydrogen peroxide modifies the kinetics of HERG channel expressed in a mammalian cell line. J Pharmacol Exp Ther 297:96–102

    PubMed  CAS  Google Scholar 

  3. Bogeski I, Kummerow C, Al-Ansary D, Schwarz EC, Koehler R, Kozai D, Takahashi N, Peinelt C, Griesemer D, Bozem M, Mori Y, Hoth M, Niemeyer BA (2010) Differential redox regulation of ORAI ion channels: a mechanism to tune cellular calcium signaling. Sci Signal 3:ra24

    Google Scholar 

  4. D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R (2007) Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 43:348–361

    PubMed  Google Scholar 

  5. Delisle BP, Anson BD, Rajamani S, January CT (2004) Biology of cardiac arrhythmias: ion channel protein trafficking. Circ Res 94:1418–1428

    Article  PubMed  CAS  Google Scholar 

  6. Drouin E, Charpentier F, Gauthier C, Laurent K, Le Marec H (1995) Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of M cells. J Am Coll Cardiol 26:185–192

    Article  PubMed  CAS  Google Scholar 

  7. Fernandez D, Ghanta A, Kauffman GW, Sanguinetti MC (2004) Physicochemical features of the HERG channel drug binding site. J Biol Chem 279:10120–10127

    Article  PubMed  CAS  Google Scholar 

  8. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  PubMed  CAS  Google Scholar 

  9. Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7:690–702

    Article  PubMed  CAS  Google Scholar 

  10. Fink M, Noble D, Virag L, Varro A, Giles WR (2008) Contributions of HERG K + current to repolarization of the human ventricular action potential. Prog Biophys Mol Biol 96:357–376

    Article  PubMed  CAS  Google Scholar 

  11. Fraga CG (2007) Plant polyphenols: how to translate their in vitro antioxidant actions to in vivo conditions. IUBMB Life 59:308–315

    Article  PubMed  CAS  Google Scholar 

  12. Frolov RV, Ignatova II, Singh S (2011) Inhibition of HERG potassium channels by celecoxib and its mechanism. PLoS One 6:e26344

    Article  PubMed  CAS  Google Scholar 

  13. Gustina AS, Trudeau MC (2011) hERG potassium channel gating is mediated by N- and C-terminal region interactions. J Gen Physiol 137:315–325

    Article  PubMed  CAS  Google Scholar 

  14. Hu CW, Sheng Y, Zhang Q, Liu HB, Xie X, Ma WC, Huo R, Dong DL (2012) Curcumin inhibits hERG potassium channels in vitro. Toxicol Lett 208:192–196

    Article  PubMed  CAS  Google Scholar 

  15. Iost N, Virag L, Opincariu M, Szecsi J, Varro A, Papp JG (1998) Delayed rectifier potassium current in undiseased human ventricular myocytes. Cardiovasc Res 40:508–515

    Article  PubMed  Google Scholar 

  16. Kolbe K, Schonherr R, Gessner G, Sahoo N, Hoshi T, Heinemann SH (2010) Cysteine 723 in the C-linker segment confers oxidative inhibition of hERG1 potassium channels. J Physiol 588:2999–3009

    Article  PubMed  CAS  Google Scholar 

  17. Li J, Correa AM (2002) Kinetic modulation of HERG potassium channels by the volatile anesthetic halothane. Anesthesiology 97:921–930

    Article  PubMed  CAS  Google Scholar 

  18. Mainardi T, Kapoor S, Bielory L (2009) Complementary and alternative medicine: herbs, phytochemicals and vitamins and their immunologic effects. J Allergy Clin Immunol 123:283–294

    Article  PubMed  CAS  Google Scholar 

  19. Michaluart P, Masferrer JL, Carothers AM, Subbaramaiah K, Zweifel BS, Koboldt C, Mestre JR, Grunberger D, Sacks PG, Tanabe T, Dannenberg AJ (1999) Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation. Cancer Res 59:2347–2352

    PubMed  CAS  Google Scholar 

  20. Milnes JT, Witchel HJ, Leaney JL, Leishman DJ, Hancox JC (2010) Investigating dynamic protocol-dependence of hERG potassium channel inhibition at 37 degrees C: cisapride versus dofetilide. J Pharmacol Toxicol Methods 61:178–191

    Article  PubMed  CAS  Google Scholar 

  21. Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC (2000) A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci USA 97:12329–12333

    Article  PubMed  CAS  Google Scholar 

  22. Mitcheson JS, Chen J, Sanguinetti MC (2000) Trapping of a methanesulfonanilide by closure of the HERG potassium channel activation gate. J Gen Physiol 115:229–240

    Article  PubMed  CAS  Google Scholar 

  23. Nam JH, Shin DH, Zheng H, Kang JS, Kim WK, Kim SJ (2009) Inhibition of store-operated Ca2+ entry channels and K + channels by caffeic acid phenethylester in T lymphocytes. Eur J Pharmacol 612:153–160

    Article  PubMed  CAS  Google Scholar 

  24. Ono K, Ito H (1995) Role of rapidly activating delayed rectifier K + current in sinoatrial node pacemaker activity. Am J Physiol 269:H453–H462

    PubMed  CAS  Google Scholar 

  25. Roden DM, Viswanathan PC (2005) Genetics of acquired long QT syndrome. J Clin Invest 115:2025–2032

    Article  PubMed  CAS  Google Scholar 

  26. Scapagnini G, Foresti R, Calabrese V, Giuffrida Stella AM, Green CJ, Motterlini R (2002) Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers. Mol Pharmacol 61:554–561

    Article  PubMed  CAS  Google Scholar 

  27. Shin DH, Seo EY, Pang B, Nam JH, Kim HS, Kim WK, Kim SJ (2011) Inhibition of Ca2+ −release-activated Ca2+ channel (CRAC) and K+ channels by curcumin in Jurkat-T cells. J Pharmacol Sci 115:144–154

    Article  PubMed  CAS  Google Scholar 

  28. Shin DH, Nam JH, Lee ES, Zhang Y, Kim SJ (2012) Inhibition of Ca2+ release-activated Ca2+ channel (CRAC) by curcumin and caffeic acid phenethyl ester (CAPE) via electrophilic addition to a cysteine residue of Orai1. Biochem Biophys Res Commun

  29. Strimpakos AS, Sharma RA (2008) Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 10:511–545

    Article  PubMed  CAS  Google Scholar 

  30. ten Tusscher KH, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol Heart Circ Physiol 286:H1573–H1589

    Article  PubMed  Google Scholar 

  31. Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP (2012) hERG K(+) channels: structure, function, and clinical significance. Physiol Rev 92:1393–1478

    Article  PubMed  CAS  Google Scholar 

  32. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15:1867–1876

    Article  PubMed  CAS  Google Scholar 

  33. Wilders R (2006) Dynamic clamp: a powerful tool in cardiac electrophysiology. J Physiol 576:349–359

    Article  PubMed  CAS  Google Scholar 

  34. Youm JB, Jo SH, Leem CH, Ho WK, Earm YE (2004) Role of stretch-activated channels in stretch-induced changes of electrical activity in rat atrial myocytes. Kor J Physiol Pharmacol 8:33–41

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF 2011–0017370 and NRF 2012–0000809).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Woo Kyung Kim or Sung Joon Kim.

Appendix

Appendix

Table 1 Model parameters

Current amplitude

$$ {I_{\mathrm{hERG}}}=\left({{{\bar{g}}_{\mathrm{fast}}} \cdot {{\mathrm{x}}_{\mathrm{r}1,\mathrm{fast}}}+{{\bar{g}}_{\mathrm{slow}}} \cdot {{\mathrm{x}}_{\mathrm{r}1,\mathrm{slow}}}} \right)\cdot {{\mathrm{x}}_{\mathrm{r}2}}\cdot \left( {V-{{\mathrm{E}}_{\mathrm{K}}}} \right) $$

Activation

For control:

$$ {{\bar{\mathrm{x}}}_{\mathrm{r}1,\mathrm{fast}}}=\frac{1}{{1+{e^{{-\left( {V+11.37} \right)/6.5}}}}} $$
$$ {\tau_{{\mathrm{r}1,\mathrm{fast}}}}=\frac{1}{{1.00188 \cdot 1{0^{-4 }} \cdot {e^{-V/14.10186 }}+5.89793 \cdot 1{0^{-4 }} \cdot {e^{V/9.82184 }}}} $$
$$ {{\bar{\mathrm{x}}}_{\mathrm{r}1,\mathrm{slow}}}={{\bar{\mathrm{x}}}_{\mathrm{r}1,\mathrm{fast}}} $$
$$ {\tau_{{\mathrm{r}1,\mathrm{slow}}}}=\frac{1}{{2.30792 \cdot 1{0^{-5 }} \cdot {e^{-V/17.63893 }}+7.47645 \cdot 1{0^{-4 }} \cdot {e^{V/14.11235 }}\ }} $$

For 10 μM CAPE:

$$ {{\bar{\mathrm{x}}}_{\mathrm{r}1,\mathrm{fast}}}=\frac{1}{{1+{e^{{-\left( {V+21.37} \right)/6.5}}}}} $$
$$ {\tau_{{\mathrm{r}1,\mathrm{fast}}}} = \frac{1}{{1.12741 \cdot 1{0^{-5 }} \cdot {e^{-V/7.37214 }}+0.00349 \cdot {e^{V/14.22556 }}}} $$
$$<Equk>$$ {{\bar{\mathrm{x}}}_{\mathrm{r}1,\mathrm{slow}}}={{\bar{\mathrm{x}}}_{\mathrm{r}1,\mathrm{fast}}} $$
$$ {\tau_{{\mathrm{r}1,\mathrm{slow}}}}=\frac{1}{{1.64477 \cdot 1{0^{-7 }} \cdot {e^{-V/5.22954 }}+0.00158 \cdot {e^{V/15.80355 }}}} $$

For 10 μM curcumin:

$$ {{\bar{\mathrm{x}}}_{\mathrm{r}1,\mathrm{fast}}}=\frac{1}{{1+{e^{{-\left( {V+16.00} \right)/6.17}}}}} $$
$$ {\tau_{{\mathrm{r}1,}}}_{\mathrm{fast}}=\frac{1}{{2.59718 \cdot 1{0^{-5 }} \cdot {e^{-V/9.76995 }}+0.0055 \cdot {e^{V/20.29395 }}}} $$
$$ {{\bar{\mathrm{x}}}_{\mathrm{r}1,\mathrm{slow}}}={{\bar{\mathrm{x}}}_{\mathrm{r}1,\mathrm{fast}}} $$
$$ {\tau_{{\mathrm{r}1,\mathrm{slow}}}}=\frac{1}{{1.46618 \cdot 1{0^{-4 }} \cdot {e^{-V/93.70289 }}+0.003 \cdot {e^{V/15.80355 }}}} $$

Inactivation

$$ {{\bar{\mathrm{x}}}_{\mathrm{r}2}}=\frac{1}{{1+{e^{{\left( {V+42.84} \right)/21.57}}}}} $$
$$ {\tau_{{\mathrm{r}2}}}=\frac{1}{{4.22157 \cdot 1{0^{-4 }} \cdot {e^{{-\left( {V-115.79877} \right)/30.0}}}+0.01681 \cdot {e^{{\left( {V+50.03784} \right)/32.4696}}}}} $$

First-order differential equations

$$ \frac{{\mathrm{d}{{\mathrm{x}}_{\mathrm{r}1,\mathrm{fast}}}}}{\mathrm{d}\mathrm{t}}=\frac{{{{{\bar{\mathrm{x}}}}_{\mathrm{r}1,\mathrm{fast}}}-{{\mathrm{x}}_{\mathrm{r}1,\mathrm{fast}}}}}{{{\tau_{\mathrm{r}1,\mathrm{fast}}}}} $$
$$ \frac{{\mathrm{d}{{\mathrm{x}}_{\mathrm{r}1,\mathrm{slow}}}}}{\mathrm{d}\mathrm{t}}=\frac{{{{{\bar{\mathrm{x}}}}_{\mathrm{r}1,\mathrm{slow}}}-{{\mathrm{x}}_{\mathrm{r}1,\mathrm{slow}}}}}{{{\tau_{\mathrm{r}1,\mathrm{slow}}}}} $$
$$ \frac{{\mathrm{d}{{\mathrm{x}}_{\mathrm{r}2}}}}{\mathrm{d}\mathrm{t}}=\frac{{{{{\bar{\mathrm{x}}}}_{\mathrm{r}2}}-{{\mathrm{x}}_{\mathrm{r}2}}}}{{{\tau_{\mathrm{r}2}}}} $$

Equilibrium potential of K+

$$ {{\mathrm{E}}_{\mathrm{K}}}=\frac{{\mathrm{R}\cdot \mathrm{T}}}{F}\cdot \log \frac{{{{\mathrm{K}}_{\mathrm{o}}}}}{{{{\mathrm{K}}_{\mathrm{i}}}}} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S.W., Kim, K.S., Shin, D.H. et al. Class 3 inhibition of hERG K+ channel by caffeic acid phenethyl ester (CAPE) and curcumin. Pflugers Arch - Eur J Physiol 465, 1121–1134 (2013). https://doi.org/10.1007/s00424-013-1239-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1239-7

Keywords

Navigation