Advertisement

Fibroblast growth factor 23 enhances renal klotho abundance

  • Tsuneo TakenakaEmail author
  • Yusuke Watanabe
  • Tsutomu Inoue
  • Takashi Miyazaki
  • Hiromichi Suzuki
Integrative Physiology

Abstract

Klotho constitutes the receptor for fibroblast growth factor 23 (FGF23). However, the effects of FGF23 on renal and circulating klotho are not well-known. In vivo experiments were performed to assess the effects of FGF23 (10 μg/kg), parathyroid hormone (PTH, 10 μg/kg), and 1,25-dihydroxy-vitamin D3 (1,25VD, 1 μg/kg) on renal expression and serum concentration of klotho in Wistar rats. Phosphate excretion was increased at 3 h after FGF23 administration (p < 0.05). Renal klotho expressions and serum klotho levels were elevated at 3 h (p < 0.01) by FGF23. At 24 h, phosphate excretion was still elevated (p < 0.05), and serum phosphate, 1,25VD, and PTH were reduced (p < 0.05). However, serum and renal klotho returned to the control level at 24 h. PTH markedly increased phosphate excretion after 24 h (p < 0.01). There were increases in FGF23 at 3 and 24 h, and 1,25VD at 24 h after PTH administration (p < 0.05). Serum klotho concentration and renal klotho expression were elevated by PTH at 3 or 24 h. After 24 h of exposure to 1,25VD, considerable increases in serum FGF23, calcium, and phosphate were seen (p < 0.05), but PTH was decreased (p < 0.01). 1,25 VD elevated renal klotho expression and serum klotho (p < 0.05) at 3 h, but returned to control levels at 24 h. Our data indicate that FGF23 rapidly increases renal klotho expression and serum klotho. The present findings are consistent with the notion that PTH increases phosphate excretion at least in part through elevations of FGF23 and klotho. Moreover, our results suggest that 1,25VD increases klotho expression independently of FGF23.

Keywords

Early growth response-1 transcriptional factor Parathyroid hormone Phosphaturia 1,25-Dihydroxy-vitamin D3 25-Hydroxyvitamin D-1 alpha-hydroxylase 

Notes

Acknowledgments

The authors have no conflicts of interest to declare regarding this paper. This study was partly supported by the grant from Saitama Medical University (no. 20-1-2-07). No additional external funding was received for this study. The authors thank Ms. Makiko Funabashi, Makiko Sato for the technical assistance. We appreciate Mr. Masayoshi Okubo and Katsumi Ogiwara for taking care of the animals. Parts of the data in this manuscript were presented in the annual meeting of the American Society of Nephrology in San Diego CA USA, October 2009.

Supplementary material

424_2013_1226_Fig5_ESM.jpg (117 kb)
ESM 1

(JPEG 116 kb)

424_2013_1226_MOESM1_ESM.tif (503 kb)
High Resolution Image (TIFF 502 kb)

References

  1. 1.
    Barthel TK, Mathern DR, Whitfield GK, Haussler CA, Hopper HA 4th, Hsieh JC, Slater SA, Hsieh G, Kaczmarska M, Jurutka PW, Kolek OI, Ghishan FK, Haussler MR (2007) 1,25-Dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem Mol Biol 103:381–388PubMedCrossRefGoogle Scholar
  2. 2.
    Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117(12):4003–4008PubMedGoogle Scholar
  3. 3.
    Björklund P, Krajisnik T, Akerström G, Westin G, Larsson TE (2008) Type I membrane klotho expression is decreased and inversely correlated to serum calcium in primary hyperparathyroidism. J Clin Endocrinol Metab 93(10):4152–4157PubMedCrossRefGoogle Scholar
  4. 4.
    Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG (2005) The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310(5747):490–493PubMedCrossRefGoogle Scholar
  5. 5.
    Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR (2007) Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci U S A 104(50):19796–19801PubMedCrossRefGoogle Scholar
  6. 6.
    Choi BH, Kim CG, Lim Y, Lee YH, Shin SY (2010) Transcriptional activation of the human Klotho gene by epidermal growth factor in HEK293 cells; role of Egr-1. Gene 450(1–2):121–127PubMedCrossRefGoogle Scholar
  7. 7.
    Farrow EG, Davis SI, Summers LJ, White KE (2009) Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J Am Soc Nephrol 20(5):955–960PubMedCrossRefGoogle Scholar
  8. 8.
    Fukuda T, Kanomata K, Nojima J, Urakawa I, Suzawa T, Imada M, Kukita A, Kamijo R, Yamashita T, Katagiri T (2007) FGF23 induces expression of two isoforms of NAB2, which are corepressors of Egr-1. Biochem Biophys Res Commun 353:147–151PubMedCrossRefGoogle Scholar
  9. 9.
    Hall RJ, Erickson CA (2003) ADAM 10: an active metalloprotease expressed during avian epithelial morphogenesis. Dev Biol 256(1):146–159PubMedCrossRefGoogle Scholar
  10. 10.
    Haruna Y, Kashihara N, Satoh M, Tomita N, Namikoshi T, Sasaki T, Fujimori T, Xie P, Kanwar YS (2007) Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proc Natl Acad Sci U S A 104:2331–2336PubMedCrossRefGoogle Scholar
  11. 11.
    Haussler MR, Haussler CA, Whitfield GK, Hsieh JC, Thompson PD, Barthel TK, Bartik L, Egan JB, Wu Y, Kubicek JL, Lowmiller CL, Moffet EW, Forster RE, Jurutka PW (2010) The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the "Fountain of Youth" to mediate healthful aging. J Steroid Biochem Mol Biol 121(1–2):88–97PubMedCrossRefGoogle Scholar
  12. 12.
    Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque MS, Rosenblatt KP, Baum MG, Kuro-o M, Moe OW (2010) Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J 24(9):3438–3450PubMedCrossRefGoogle Scholar
  13. 13.
    Kato Y, Arakawa E, Kinoshita S, Shirai A, Furuya A, Yamano K, Nakamura K, Iida A, Anazawa H, Koh N, Iwano A, Imura A, Fujimori T, Kuro-o M, Hanai N, Takeshige K, Nabeshima Y (2000) Establishment of the anti-Klotho monoclonal antibodies and detection of Klotho protein in kidneys. Biochem Biophys Res Commun 267(2):597–602PubMedCrossRefGoogle Scholar
  14. 14.
    Kawata T, Imanishi Y, Kobayashi K, Miki T, Arnold A, Inaba M, Nishizawa Y (2007) Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J Am Soc Nephrol 18(10):2683–2688PubMedCrossRefGoogle Scholar
  15. 15.
    Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281(10):6120–6123PubMedCrossRefGoogle Scholar
  16. 16.
    Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51PubMedCrossRefGoogle Scholar
  17. 17.
    Kuro-o M (2010) Overview of the FGF23-Klotho axis. Pediatr Nephrol 25:583–590PubMedCrossRefGoogle Scholar
  18. 18.
    Leong PK, Yang LE, Lin HW, Holstein-Rathlou NH, McDonough AA (2004) Acute hypotension induced by aortic clamp vs. PTH provokes distinct proximal tubule Na + transporter redistribution patterns. Am J Physiol 287(4):R878–R885Google Scholar
  19. 19.
    Miyazaki T, Takenaka T, Inoue T, Sato M, Hanyu M, Eiki Y, Nodera M, Yanagisawa H, Ohno Y, Shibazaki S, Suzuki H (2010) Klotho expression is induced by calorie restriction in adult male rats. Trace Nutr Res 27:92–96Google Scholar
  20. 20.
    Nagano N (2006) Pharmacological and clinical properties of calcimimetics: calcium receptor activators that afford an innovative approach to controlling hyperparathyroidism. Pharmacol Ther 109(3):339–365PubMedCrossRefGoogle Scholar
  21. 21.
    Nemeth EF, Steffey ME, Fox J (1996) The parathyroid calcium receptor: a novel therapeutic target for treating hyperparathyroidism. Pediatr Nephrol 10(3):275–279PubMedGoogle Scholar
  22. 22.
    Olauson H, Lindberg K, Amin R, Jia T, Wernerson A, Andersson G, Larsson TE (2012) Targeted deletion of Klotho in kidney distal tubule disrupts mineral metabolism. J Am Soc Nephrol 23(10):1641–1651PubMedCrossRefGoogle Scholar
  23. 23.
    Perwad F, Zhang MY, Tenenhouse HS, Portale AA (2007) Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1alpha-hydroxylase expression in vitro. Am J Physiol 293:F1577–F1583Google Scholar
  24. 24.
    Pfister MF, Lederer E, Forgo J, Ziegler U, Lötscher M, Quabius ES, Biber J, Murer H (1997) Parathyroid hormone-dependent degradation of type II Na+/Pi cotransporters. J Biol Chem 272(32):20125–20130PubMedCrossRefGoogle Scholar
  25. 25.
    Rhee Y, Bivi N, Farrow E, Lezcano V, Plotkin LI, White KE, Bellido T (2011) Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 46:636–643CrossRefGoogle Scholar
  26. 26.
    Saji F, Shigematsu T, Sakaguchi T, Ohya M, Orita H, Maeda Y, Ooura M, Mima T, Negi S (2010) Fibroblast growth factor 23 production in bone is directly regulated by 1{alpha},25-dihydroxyvitamin D, but not PTH. Am J Physiol 299:F1212–F1217CrossRefGoogle Scholar
  27. 27.
    Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568PubMedGoogle Scholar
  28. 28.
    Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A 98:6500–6505PubMedCrossRefGoogle Scholar
  29. 29.
    Shiraki-Iida T, Aizawa H, Matsumura Y, Sekine S, Iida A, Anazawa H, Nagai R, Kuro-o M, Nabeshima Y (1998) Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett 424(1–2):6–10PubMedCrossRefGoogle Scholar
  30. 30.
    Takenaka T, Inoue T, Okada H, Ohno Y, Miyazaki T, Chaston DJ, Hill CE, Suzuki H (2011) Altered gap junctional communication and renal haemodynamics in Zucker fatty rat model of type 2 diabetes. Diabetologia 54(8):2192–2201PubMedCrossRefGoogle Scholar
  31. 31.
    Takenaka T, Kato N, Kikuta T, Inoue T, Miyazaki T, Ohno Y, Suzuki H (2008) Calcimimetics reduce renal klotho expression (abstract). Presented in Annual meeting of American Society of Nephrology, Philadelphia PA November 2008Google Scholar
  32. 32.
    Tang WJ, Wang LF, Xu XY, Zhou Y, Jin WF, Wang HF, Gao J (2010) Autocrine/paracrine action of vitamin D on FGF23 expression in cultured rat osteoblasts. Calcif Tissue Int 86(5):404–410PubMedCrossRefGoogle Scholar
  33. 33.
    Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444(7120):770–774PubMedCrossRefGoogle Scholar
  34. 34.
    Yamazaki Y, Imura A, Urakawa I, Shimada T, Murakami J, Aono Y, Hasegawa H, Yamashita T, Nakatani K, Saito Y, Okamoto N, Kurumatani N, Namba N, Kitaoka T, Ozono K, Sakai T, Hataya H, Ichikawa S, Imel EA, Econs MJ, Nabeshima Y (2010) Establishment of sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun 398(3):513–518PubMedCrossRefGoogle Scholar
  35. 35.
    Yan X, Yokote H, Jing X, Yao L, Sawada T, Zhang Y, Liang S, Sakaguchi K (2005) Fibroblast growth factor 23 reduces expression of type IIa Na+/Pi co-transporter by signaling through a receptor functionally distinct from the known FGFRs in opossum kidney cells. Genes Cells 10:489–502PubMedCrossRefGoogle Scholar
  36. 36.
    Yuan Q, Sato T, Densmore M, Saito H, Schüler C, Erben RG, Lanske B (2011) FGF-23/Klotho signaling is not essential for the phosphaturic and anabolic functions of PTH. J Bone Miner Res 26(9):2026–2035PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tsuneo Takenaka
    • 1
    Email author
  • Yusuke Watanabe
    • 1
  • Tsutomu Inoue
    • 1
  • Takashi Miyazaki
    • 2
  • Hiromichi Suzuki
    • 1
    • 2
  1. 1.Faculty of Medicine Department of NephrologySaitama Medical UniversityIrumaJapan
  2. 2.Community Health CenterSaitama Medical UniversityIrumaJapan

Personalised recommendations