Skip to main content

Advertisement

Log in

Nerve growth factor-induced endocytosis of TWIK-related acid-sensitive K+ 1 channels in adrenal medullary cells and PC12 cells

  • Signaling and Cell Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

TWIK-related acid-sensitive K+ (TASK) channels belong to a family of two-pore domain K+ channels which produce background K+ currents and are involved in important physiological functions, such as acidosis detection. We have recently elucidated that TASK1-like channels function as a sensor of acidosis in rat adrenal medullary (AM) cells and thus are indispensable for the endocrine function of AM cells. Here, using pharmacological, electrophysiological and biochemical methods, we studied how the expression and localisation of TASK1 channels are regulated in rat AM cells and PC12 cells. PC12 cells were found to express not only TASK1 but also TASK3 channels, and they did not constitute a heterodimer. The exposure of AM cells and PC12 cells to nerve growth factor (NGF) induced endocytosis of TASK1, but not TASK3 channels, in a clathrin-dependent manner. Mutation analysis of the TASK1 channel revealed that the dileucine motif (LL263/264) was involved in at least part of the endocytosis. Plating GFP-TASK1-expressing PC12 cells onto a sheet of fibroblasts, which produced NGF, resulted in the endocytosis of GFP-TASK1 channels. Additionally, the expression of TASK1 channels at the protein and mRNA levels was suppressed in PC12 cells treated with NGF for 2 weeks. These results indicate that NGF suppresses the expression of TASK1 channels in the plasma membrane via not only endocytosis but also the inhibition of gene transcription. Thus, no access to NGF may play a major role for the maintenance of TASK1 channels in the cell membrane in AM cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Angeletti PU, Levi-Montalcini R, Kettler R, Thoenen H (1972) Comparative studies on the effect of the nerve growth factor on sympathetic ganglia and adrenal medulla in newborn rats. Brain Res 44:197–206

    Article  PubMed  CAS  Google Scholar 

  2. Aloe L, Levi-Montalcini R (1979) Nerve growth factor-induced transformation of immature chromaffin cells in vivo into sympathetic neurons: effect of antiserum to nerve growth factor. Proc Natl Acad Sci U S A 76:1246–1250

    Article  PubMed  CAS  Google Scholar 

  3. Barker PA, Hussain NK, McPherson PS (2002) Retrograde signaling by the neurotrophins follows a well-worn trk. Trends Neurosci 25:379–381

    Article  PubMed  CAS  Google Scholar 

  4. Bayliss DA, Barrett PQ (2008) Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci 29:566–575

    Article  PubMed  CAS  Google Scholar 

  5. Berg AP, Talley EM, Manger JP, Bayliss DA (2004) Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. J Neurosci 24:6693–6702

    Article  PubMed  CAS  Google Scholar 

  6. Berg MM, Sternberg DW, Parada LF, Chao MV (1992) K-252a inhibits nerve growth factor-induced trk proto-oncogene tyrosine phosphorylation and kinase activity. J Biol Chem 267:13–16

    PubMed  CAS  Google Scholar 

  7. Brown DA, Selyanko AA (1985) Membrane currents underlying the cholinergic slow excitatory post-synaptic potential in the rat sympathetic ganglion. J Physiol 365:365–387

    PubMed  CAS  Google Scholar 

  8. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    Article  PubMed  CAS  Google Scholar 

  9. Cryer PE (1980) Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med 303:436–444

    Article  PubMed  CAS  Google Scholar 

  10. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    Article  PubMed  CAS  Google Scholar 

  11. Donoghue PC, Graham A, Kelsh RN (2008) The origin and evolution of the neural crest. Bioessays 30:530–541

    Article  PubMed  Google Scholar 

  12. Du G, Chen X, Todorovic MS, Shu S, Kapur J, Bayliss DA (2011) Task channel deletion reduces sensitivity to local anesthetic-induced seizures. Anesthesiology 115:1003–1011

    Article  PubMed  CAS  Google Scholar 

  13. Enyedi P, Czirják G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605

    Article  PubMed  CAS  Google Scholar 

  14. Ferreira LT, Santos MS, Kolmakova NG, Koenen J, Barbosa J Jr, Gomez MV, Guatimosim C, Zhang X, Parsons SM, Prado VF, Prado MA (2005) Structural requirements for steady-state localisation of the vesicular acetylcholine transporter. J Neurochem 94:957–969

    Article  PubMed  CAS  Google Scholar 

  15. Ford MG, Pearse BMF, Higgins MK, Vallis Y, Owen DJ, Gibson A, Hopkins CR, Evans PR, McMahon HT (2001) Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291:1051–1055

    Article  PubMed  CAS  Google Scholar 

  16. Fujiwara N, Warashina A, Shimoji K (1994) Characterization of low pH-induced catecholamine secretion in the rat adrenal medulla. J Neurochem 62:1809–1815

    Article  PubMed  CAS  Google Scholar 

  17. Grant NJ, Claudepierre T, Aunis D, Langley K (1996) Glucocorticoids and nerve growth factor differentially modulate cell adhesion molecule L1 expression in PC12 cells. J Neurochem 66:1400–1408

    Article  PubMed  CAS  Google Scholar 

  18. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73:2424–2428

    Article  PubMed  CAS  Google Scholar 

  19. Inoue M, Fujishiro N, Imanaga I (1998) Hypoxia and cyanide induce depolarization and catecholamine release in dispersed guinea-pig chromaffin cells. J Physiol 507:807–818

    Article  PubMed  CAS  Google Scholar 

  20. Inoue M, Fujishiro N, Imanaga I (1999) Na+ pump inhibition and non-selective cation channel activation by cyanide and anoxia in guinea-pig chromaffin cells. J Physiol 519:385–396

    Article  PubMed  CAS  Google Scholar 

  21. Inoue M, Fujishiro N, Ogawa K, Muroi M, Sakamoto Y, Imanaga I, Shioda S (2000) Pituitary adenylate cyclase-activating polypeptide may function as a neuromodulator in guinea-pig adrenal medulla. J Physiol 528:473–487

    Article  PubMed  CAS  Google Scholar 

  22. Inoue M, Harada K, Matsuoka H, Sata T, Warashina A (2008) Inhibition of TASK1-like channels by muscarinic receptor stimulation in rat adrenal medullary cells. J Neurochem 106:1804–1814

    PubMed  CAS  Google Scholar 

  23. Inoue M, Harada K, Matsuoka H, Nakamura J, Warashina A (2012) Mechanisms and roles of muscarinic activation in guinea-pig adrenal medullary cells. Am J Physiol Cell Physiol 303:C635–C644

    Article  PubMed  CAS  Google Scholar 

  24. Inoue M, Imanaga I (1995) Mechanism of activation of nonselective cation channels by putative M4 muscarinic receptor in guinea-pig chromaffin cells. Br J Pharmacol 114:419–427

    Article  PubMed  CAS  Google Scholar 

  25. Ivanov AI (2008) Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol Biol 440:15–33

    Article  PubMed  CAS  Google Scholar 

  26. Kang D, Han J, Talley EM, Bayliss DA, Kim D (2004) Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells. J Physiol 554:64–77

    Article  PubMed  CAS  Google Scholar 

  27. Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, Touret N, Hahn KM, Grinstein S (2010) Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol 188:547–563

    Article  PubMed  CAS  Google Scholar 

  28. Lievens S, Tavernier J (2006) Single protein complex visualization: seeing is believing. Nat Methods 3(12):971–972

    Article  PubMed  CAS  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  30. Mason AK, Jacobs BE, Welling PA (2008) AP-2-dependent internalisation of potassium channel Kir2.3 is driven by a novel di-hydrophobic signal. J Biol Chem 283:5973–5984

    Article  PubMed  CAS  Google Scholar 

  31. Matsuoka H, Harada K, Endo Y, Warashina A, Doi Y, Nakamura J, Inoue M (2008) Molecular mechanisms supporting a paracrine role of GABA in rat adrenal medullary cells. J Physiol 586:4825–4842

    Article  PubMed  CAS  Google Scholar 

  32. Medbø JI, Sejersted OM (1990) Plasma potassium changes with high intensity exercise. J Physiol 421:105–122

    PubMed  Google Scholar 

  33. Mojet MH, Mills E, Duchen MR (1997) Hypoxia-induced catecholamine secretion in isolated newborn rat adrenal chromaffin cells is mimicked by inhibition of mitochondrial respiration. J Physiol 504:175–189

    Article  PubMed  CAS  Google Scholar 

  34. Naga Prasad SV, Jayatilleke A, Madamanchi A, Rockman HA (2005) Protein kinase activity of phosphoinositide 3-kinase regulates β-adrenergic receptor endocytosis. Nat Cell Biol 7:785–796

    Article  PubMed  Google Scholar 

  35. Ogawa M, Ishikawa T, Irimajiri A (1984) Adrenal chromaffin cells form functional cholinergic synapses in culture. Nature 307:66–68

    Article  PubMed  CAS  Google Scholar 

  36. Oger J, Arnason BGW, Pantazis N, Lehrich J, Young M (1974) Synthesis of nerve growth factor by L and 3T3 cells in culture. Proc Natl Acad Sci U S A 71:1554–1558

    Article  PubMed  CAS  Google Scholar 

  37. Shao Y, Akmentin W, Toledo-Aral JJ, Rosenbaum J, Valdez G, Cabot JB, Hilbush BS, Halegoua S (2002) Pincher, a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes. J Cell Biol 157:679–691

    Article  PubMed  CAS  Google Scholar 

  38. Sofer A, Futerman AH (1995) Cationic amphiphilic drugs inhibit the internalisation of cholera toxin to the Golgi apparatus and the subsequent elevation of cyclic AMP. J Biol Chem 270:12117–12122

    Article  PubMed  CAS  Google Scholar 

  39. Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217–1281

    Article  PubMed  CAS  Google Scholar 

  40. Söderberg O, Gullberg M, Jarvius M, Ridderstråle K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000

    Article  PubMed  Google Scholar 

  41. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525

    Article  PubMed  CAS  Google Scholar 

  42. Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA (2001) CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 21:7491–7505

    PubMed  CAS  Google Scholar 

  43. Traub LM (2003) Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J Cell Biol 163:203–208

    Article  PubMed  CAS  Google Scholar 

  44. Traub LM (2009) Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat Rev Mol Cell Biol 10:583–596

    Article  PubMed  CAS  Google Scholar 

  45. Tron VA, Coughlin MD, Jang DE, Stanisz J, Sauder DN (1990) Expression and modulation of nerve growth factor in murine keratinocytes (PAM212). J Clin Invest 85:1085–1089

    Article  PubMed  CAS  Google Scholar 

  46. Unsicker K, Krisch B, Otten U, Thoenen H (1978) Nerve growth factor-induced fiber outgrowth from isolated rat adrenal chromaffin cells: impairment by glucocorticoids. Proc Natl Acad Sci U S A 75:3498–3502

    Article  PubMed  CAS  Google Scholar 

  47. Valdez G, Philippidou P, Rosenbaum J, Akmentin W, Shao Y, Halegoua S (2007) Trk-signaling endosomes are generated by Rac-dependent macroendocytosis. Proc Natl Acad Sci U S A 104:12270–12275

    Article  PubMed  CAS  Google Scholar 

  48. Vlahos CJ, Matter WF, Hui KY, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269:5241–5248

    PubMed  CAS  Google Scholar 

  49. Wallace DJ, Chen C, Marley PD (2002) Histamine promotes excitability in bovine adrenal chromaffin cells by inhibiting an M-current. J Physiol 540:921–939

    Article  PubMed  CAS  Google Scholar 

  50. Yuyama K, Sekino-Suzuki N, Sanai Y, Kasahara K (2007) Translocation of activated heterotrimeric G protein Gαo to ganglioside-enriched detergent-resistant membrane rafts in developing cerebellum. J Biol Chem 282:26392–26400

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by MEXT KAKENHI (21026029 to MI) and JSPS KAKENHI (21500360 to MI and 22790222 and 24790228 to HM). We would like to thank D.A. Bayliss (University of Virginia, USA) for providing GFP-TASK1 and GFP-TASK3 constructs, K. Kono (UOEH, Japan) for NIH3T3, B.J. Nichols (MRC Laboratory of Molecular Biology, UK) and M.A.M. Prado (Robarts Research Institute, Canada) for the AP180-C construct, S. Ferguson (Robarts Research Institute) for Rab5-GFP construct and M. Ymamoto (Fukushima Medical University, Japan) for Golgi-CFP construct. The mouse anti-LAMP2 Ab was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the University of Iowa. We are grateful to T. Hatama for technical assistance.

Conflict of interest

The authors declare that they have on conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masumi Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuoka, H., Harada, K., Nakamura, J. et al. Nerve growth factor-induced endocytosis of TWIK-related acid-sensitive K+ 1 channels in adrenal medullary cells and PC12 cells. Pflugers Arch - Eur J Physiol 465, 1051–1064 (2013). https://doi.org/10.1007/s00424-013-1222-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1222-3

Keywords

Navigation