Truncation of murine CaV1.2 at Asp 1904 increases CaV1.3 expression in embryonic atrial cardiomyocytes

  • Jie Ding
  • Katrin Domes
  • Franz Hofmann
  • Jörg W WegenerEmail author
Ion channels, Receptors and Transporters


Cardiac CaV1.2 channels play a critical role in cardiac function. It has been proposed that the carboxyl-terminal intracellular tail of the CaV1.2 channel is the target of Ca2+-dependent and Ca2+-independent regulation of the channel. Recent studies on C-terminal truncated forms of the CaV1.2 channel reported neonatal death, reduced CaV1.2 current, and failure of β-adrenergic stimulation of these channels in ventricular cardiomyocytes (CMs). Here, we used atrial CMs at embryonic day 18.5 that expressed a C-terminal truncated form of the CaV1.2 channel (Stop/Stop). Surprisingly, the atrial CMs showed robust L-type Ca2+ currents which could be stimulated by forskolin, an activator of adenylyl cyclase. These currents exhibited a left-ward shift in the voltage-dependent activation curve and a reduced sensitivity to the Ca2+ channel blocker isradipine as compared to currents in wild-type atrial CMs. RT-PCR analysis revealed normal levels of mRNA for the CaV1.2 channel but a twofold increase in the level of mRNA for the CaV1.3 channel in the Stop/Stop atrium as compared to wild-type atrium. A Western blot analysis indicated an increase of CaV1.3 protein in the Stop/Stop atrium. We suggest that, in contrast to Stop/Stop ventricular CMs, Stop/Stop atrial CMs can compensate the functional loss of the truncated CaV1.2 channel with an upregulation of the CaV1.3 channel.


L-type Ca2+ current C-terminus Heart β-adrenergic regulation 







Hypoxanthine-guanine phosphoribosyltransferase


Embryonic day 18.5


A kinase anchoring protein


cAMP-dependent protein kinase


Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

424_2012_1212_Fig7_ESM.jpg (70 kb)
Supplemental Fig. 1

Expression analysis of L-type Ca2+ channels in the ventricular and atrial tissue from WT and Stop/Stop mice by RT-PCR. Representative ethidium bromide-stained agarose gel of amplicons generated with primers against mRNA of CaV1.2b (a) and CaV2.1 (b) in ventricular (V) and atrial (A) tissue from WT and Stop/Stop mice. The size of the amplicons is indicated on the left (base pair). Primers against mRNA for GAPDH or HPRT were used as control. In a, lung tissue from WT mice was used as a control for the smooth muscle specificity of the primers against mRNA of CaV1.2b, and H2O indicates a control for the specificity of the amplification process. c, d Semiquantitative analysis of the amplification products. Columns represent means ± SEM. Numbers in the columns indicate the number of experiments. Statistical analysis was performed by Student t test revealing no statistically significant difference between the data sets (JPEG 69 kb)

424_2012_1212_MOESM1_ESM.tif (209 kb)
High resolution image (TIFF 209 kb)


  1. 1.
    Anyukhovsky EP, Sosunov EA, Plotnikov A, Gainullin RZ, Jhang JS, Marboe CC, Rosen MR (2002) Cellular electrophysiologic properties of old canine atria provide a substrate for arrhythmogenesis. Cardiovasc Res 54(2):462–469PubMedCrossRefGoogle Scholar
  2. 2.
    Biel M, Ruth P, Bosse E, Hullin R, Stuhmer W, Flockerzi V, Hofmann F (1990) Primary structure and functional expression of a high voltage activated calcium channel from rabbit lung. FEBS Lett 269(2):409–412PubMedCrossRefGoogle Scholar
  3. 3.
    Blaich A, Welling A, Fischer S, Wegener JW, Kostner K, Hofmann F, Moosmang S (2010) Facilitation of murine cardiac L-type Ca(v)1.2 channel is modulated by calmodulin kinase II-dependent phosphorylation of S1512 and S1570. Proc Natl Acad Sci U S A 107(22):10285–10289. doi: 10.1073/pnas.0914287107 PubMedCrossRefGoogle Scholar
  4. 4.
    Bootman MD, Smyrnias I, Thul R, Coombes S, Roderick HL (2011) Atrial cardiomyocyte calcium signalling. Biochim Biophys Acta 1813(5):922–934. doi: 10.1016/j.bbamcr.2011.01.030 PubMedCrossRefGoogle Scholar
  5. 5.
    Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555. doi: 10.1146/annurev.cellbio.16.1.521 PubMedCrossRefGoogle Scholar
  6. 6.
    Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59(6):882–901. doi: 10.1016/j.neuron.2008.09.005 PubMedCrossRefGoogle Scholar
  7. 7.
    Cheng X, Liu J, Asuncion-Chin M, Blaskova E, Bannister JP, Dopico AM, Jaggar JH (2007) A novel Ca(V)1.2 N terminus expressed in smooth muscle cells of resistance size arteries modifies channel regulation by auxiliary subunits. J Biol Chem 282(40):29211–29221. doi: 10.1074/jbc.M610623200 PubMedCrossRefGoogle Scholar
  8. 8.
    Dai S, Hall DD, Hell JW (2009) Supramolecular assemblies and localized regulation of voltage-gated ion channels. Physiol Rev 89(2):411–452. doi: 10.1152/physrev.00029.2007 PubMedCrossRefGoogle Scholar
  9. 9.
    Davies MP, An RH, Doevendans P, Kubalak S, Chien KR, Kass RS (1996) Developmental changes in ionic channel activity in the embryonic murine heart. Circ Res 78(1):15–25PubMedCrossRefGoogle Scholar
  10. 10.
    DeMaria CD, Soong TW, Alseikhan BA, Alvania RS, Yue DT (2001) Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411(6836):484–489. doi: 10.1038/35078091 PubMedCrossRefGoogle Scholar
  11. 11.
    Domes K, Ding J, Lemke T, Blaich A, Wegener JW, Brandmayr J, Moosmang S, Hofmann F (2011) Truncation of murine CaV1.2 at Asp-1904 results in heart failure after birth. J Biol Chem 286(39):33863–33871. doi: 10.1074/jbc.M111.252312 PubMedCrossRefGoogle Scholar
  12. 12.
    Feng J, Yue L, Wang Z, Nattel S (1998) Ionic mechanisms of regional action potential heterogeneity in the canine right atrium. Circ Res 83(5):541–551PubMedCrossRefGoogle Scholar
  13. 13.
    Fu Y, Westenbroek RE, Yu FH, Clark JP 3rd, Marshall MR, Scheuer T, Catterall WA (2011) Deletion of the distal C terminus of CaV1.2 channels leads to loss of beta-adrenergic regulation and heart failure. J Biol Chem 286(14):12617–12626. doi: 10.1074/jbc.M110.175307 PubMedCrossRefGoogle Scholar
  14. 14.
    Fuller MD, Emrick MA, Sadilek M, Scheuer T, Catterall WA (2010) Molecular mechanism of calcium channel regulation in the fight-or-flight response. Sci Signal 3(141):ra70. doi: 10.1126/scisignal.2001152 PubMedCrossRefGoogle Scholar
  15. 15.
    Gaborit N, Le Bouter S, Szuts V, Varro A, Escande D, Nattel S, Demolombe S (2007) Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol 582(Pt 2):675–693. doi: 10.1113/jphysiol.2006.126714 PubMedCrossRefGoogle Scholar
  16. 16.
    Ganesan AN, Maack C, Johns DC, Sidor A, O’Rourke B (2006) Beta-adrenergic stimulation of L-type Ca2+ channels in cardiac myocytes requires the distal carboxyl terminus of alpha1C but not serine 1928. Circ Res 98(2):e11–e18. doi: 10.1161/01.RES.0000202692.23001.e2 PubMedCrossRefGoogle Scholar
  17. 17.
    Gao T, Cuadra AE, Ma H, Bunemann M, Gerhardstein BL, Cheng T, Eick RT, Hosey MM (2001) C-terminal fragments of the alpha 1C (CaV1.2) subunit associate with and regulate L-type calcium channels containing C-terminal-truncated alpha 1C subunits. J Biol Chem 276(24):21089–21097. doi: 10.1074/jbc.M008000200 PubMedCrossRefGoogle Scholar
  18. 18.
    Grantham CJ, Cannell MB (1996) Ca2+ influx during the cardiac action potential in guinea pig ventricular myocytes. Circ Res 79(2):194–200PubMedCrossRefGoogle Scholar
  19. 19.
    Hamilton SL, Yatani A, Brush K, Schwartz A, Brown AM (1987) A comparison between the binding and electrophysiological effects of dihydropyridines on cardiac membranes. Mol Pharmacol 31(3):221–231PubMedGoogle Scholar
  20. 20.
    Harrell MD, Harbi S, Hoffman JF, Zavadil J, Coetzee WA (2007) Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development. Physiol Genom 28(3):273–283. doi: 10.1152/physiolgenomics.00163.2006 CrossRefGoogle Scholar
  21. 21.
    Hell JW, Yokoyama CT, Wong ST, Warner C, Snutch TP, Catterall WA (1993) Differential phosphorylation of two size forms of the neuronal class C L-type calcium channel alpha 1 subunit. J Biol Chem 268(26):19451–19457PubMedGoogle Scholar
  22. 22.
    Hudmon A, Schulman H, Kim J, Maltez JM, Tsien RW, Pitt GS (2005) CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J Cell Biol 171(3):537–547. doi: 10.1083/jcb.200505155 PubMedCrossRefGoogle Scholar
  23. 23.
    Hulme JT, Lin TW, Westenbroek RE, Scheuer T, Catterall WA (2003) Beta-adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proc Natl Acad Sci U S A 100(22):13093–13098. doi: 10.1073/pnas.2135335100 PubMedCrossRefGoogle Scholar
  24. 24.
    Hulme JT, Westenbroek RE, Scheuer T, Catterall WA (2006) Phosphorylation of serine 1928 in the distal C-terminal domain of cardiac CaV1.2 channels during beta1-adrenergic regulation. Proc Natl Acad Sci U S A 103(44):16574–16579. doi: 10.1073/pnas.0607294103 PubMedCrossRefGoogle Scholar
  25. 25.
    Jones BW, Brunet S, Gilbert ML, Nichols CB, Su T, Westenbroek RE, Scott JD, Catterall WA, McKnight GS (2012) Cardiomyocytes from AKAP7 knockout mice respond normally to adrenergic stimulation. Proc Natl Acad Sci U S A 109(42):17099–17104. doi: 10.1073/pnas.1215219109 PubMedCrossRefGoogle Scholar
  26. 26.
    Kameyama M, Hofmann F, Trautwein W (1985) On the mechanism of beta-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflugers Arch 405(3):285–293PubMedCrossRefGoogle Scholar
  27. 27.
    Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87(12):1095–1102PubMedCrossRefGoogle Scholar
  28. 28.
    Klugbauer N, Welling A, Specht V, Seisenberger C, Hofmann F (2002) L-type Ca2+ channels of the embryonic mouse heart. Eur J Pharmacol 447(2–3):279–284PubMedCrossRefGoogle Scholar
  29. 29.
    Koschak A, Reimer D, Huber I, Grabner M, Glossmann H, Engel J, Striessnig J (2001) alpha 1D (Cav1.3) subunits can form l-type Ca2+ channels activating at negative voltages. J Biol Chem 276(25):22100–22106. doi: 10.1074/jbc.M101469200 PubMedCrossRefGoogle Scholar
  30. 30.
    Lemke T, Welling A, Christel CJ, Blaich A, Bernhard D, Lenhardt P, Hofmann F, Moosmang S (2008) Unchanged beta-adrenergic stimulation of cardiac L-type calcium channels in Cav 1.2 phosphorylation site S1928A mutant mice. J Biol Chem 283(50):34738–34744. doi: 10.1074/jbc.M804981200 PubMedCrossRefGoogle Scholar
  31. 31.
    Liu L, O’Hara DS, Cala SE, Poornima I, Hines RN, Marsh JD (2000) Developmental regulation of the L-type calcium channel alpha1C subunit expression in heart. Mol Cell Biochem 205(1–2):101–109PubMedCrossRefGoogle Scholar
  32. 32.
    Oliveria SF, Dell’Acqua ML, Sather WA (2007) AKAP79/150 anchoring of calcineurin controls neuronal L-type Ca2+ channel activity and nuclear signaling. Neuron 55(2):261–275. doi: 10.1016/j.neuron.2007.06.032 PubMedCrossRefGoogle Scholar
  33. 33.
    Ouadid H, Seguin J, Richard S, Chaptal PA, Nargeot J (1991) Properties and modulation of Ca channels in adult human atrial cells. J Mol Cell Cardiol 23(1):41–54PubMedCrossRefGoogle Scholar
  34. 34.
    Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102(1):89–97PubMedCrossRefGoogle Scholar
  35. 35.
    Qu Y, Baroudi G, Yue Y, El-Sherif N, Boutjdir M (2005) Localization and modulation of {alpha}1D (Cav1.3) L-type Ca channel by protein kinase A. Am J Physiol Heart Circ Physiol 288(5):H2123–H2130. doi: 10.1152/ajpheart.01023.2004 PubMedCrossRefGoogle Scholar
  36. 36.
    Qu Y, Boutjdir M (2001) Gene expression of SERCA2a and L- and T-type Ca channels during human heart development. Pediatr Res 50(5):569–574. doi: 10.1203/00006450-200111000-00006 PubMedCrossRefGoogle Scholar
  37. 37.
    Qu Y, Karnabi E, Ramadan O, Yue Y, Chahine M, Boutjdir M (2011) Perinatal and postnatal expression of Cav1.3 alpha1D Ca(2)(+) channel in the rat heart. Pediatr Res 69(6):479–484. doi: 10.1203/PDR.0b013e318217a0df PubMedCrossRefGoogle Scholar
  38. 38.
    Schram G, Pourrier M, Melnyk P, Nattel S (2002) Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res 90(9):939–950PubMedCrossRefGoogle Scholar
  39. 39.
    Seisenberger C, Specht V, Welling A, Platzer J, Pfeifer A, Kuhbandner S, Striessnig J, Klugbauer N, Feil R, Hofmann F (2000) Functional embryonic cardiomyocytes after disruption of the L-type alpha1C (Cav1.2) calcium channel gene in the mouse. J Biol Chem 275(50):39193–39199. doi: 10.1074/jbc.M006467200 PubMedCrossRefGoogle Scholar
  40. 40.
    Sun H, Leblanc N, Nattel S (1997) Mechanisms of inactivation of L-type calcium channels in human atrial myocytes. Am J Physiol 272(4 Pt 2):H1625–H1635PubMedGoogle Scholar
  41. 41.
    Takimoto K, Li D, Nerbonne JM, Levitan ES (1997) Distribution, splicing and glucocorticoid-induced expression of cardiac alpha 1C and alpha 1D voltage-gated Ca2+ channel mRNAs. J Mol Cell Cardiol 29(11):3035–3042. doi: 10.1006/jmcc.1997.0532 PubMedCrossRefGoogle Scholar
  42. 42.
    Van Wagoner DR (2003) Electrophysiological remodeling in human atrial fibrillation. Pacing Clin Electrophysiol 26(7 Pt 2):1572–1575PubMedCrossRefGoogle Scholar
  43. 43.
    Wei X, Neely A, Lacerda AE, Olcese R, Stefani E, Perez-Reyes E, Birnbaumer L (1994) Modification of Ca2+ channel activity by deletions at the carboxyl terminus of the cardiac alpha 1 subunit. J Biol Chem 269(3):1635–1640PubMedGoogle Scholar
  44. 44.
    Welling A, Ludwig A, Zimmer S, Klugbauer N, Flockerzi V, Hofmann F (1997) Alternatively spliced IS6 segments of the alpha 1C gene determine the tissue-specific dihydropyridine sensitivity of cardiac and vascular smooth muscle L-type Ca2+ channels. Circ Res 81(4):526–532PubMedCrossRefGoogle Scholar
  45. 45.
    Xu M, Welling A, Paparisto S, Hofmann F, Klugbauer N (2003) Enhanced expression of L-type Cav1.3 calcium channels in murine embryonic hearts from Cav1.2-deficient mice. J Biol Chem 278(42):40837–40841. doi: 10.1074/jbc.M307598200 PubMedCrossRefGoogle Scholar
  46. 46.
    Xu XP, Best PM (1990) Increase in T-type calcium current in atrial myocytes from adult rats with growth hormone-secreting tumors. Proc Natl Acad Sci U S A 87(12):4655–4659PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang Z, He Y, Tuteja D, Xu D, Timofeyev V, Zhang Q, Glatter KA, Xu Y, Shin HS, Low R, Chiamvimonvat N (2005) Functional roles of Cav1.3(alpha1D) calcium channels in atria: insights gained from gene-targeted null mutant mice. Circulation 112(13):1936–1944. doi: 10.1161/CIRCULATIONAHA.105.540070 PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang Z, Xu Y, Song H, Rodriguez J, Tuteja D, Namkung Y, Shin HS, Chiamvimonvat N (2002) Functional Roles of Ca(v)1.3 (alpha(1D)) calcium channel in sinoatrial nodes: insight gained using gene-targeted null mutant mice. Circ Res 90(9):981–987PubMedCrossRefGoogle Scholar
  49. 49.
    Zuhlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H (1999) Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399(6732):159–162PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jie Ding
    • 1
  • Katrin Domes
    • 1
  • Franz Hofmann
    • 1
  • Jörg W Wegener
    • 1
    Email author
  1. 1.Forschergruppe 923, Institut für Pharmakologie und Toxikologie, TU MünchenMünchenGermany

Personalised recommendations