Advertisement

Neuropathic pain: role for presynaptic T-type channels in nociceptive signaling

  • Slobodan M. TodorovicEmail author
  • Vesna Jevtovic-Todorovic
Invited Review

Abstract

Pain is an important clinical problem and, in its chronic form, may be a disabling condition. Most currently available therapies are insufficient and/or accompanied by serious side effects. Recent studies have implicated the CaV3.2 isoform of T-type Ca channels in nociceptive signaling. CaV3.2 channels are located in the somas of dorsal root ganglion cells and in the central endings of these cells in the dorsal horn of the spinal cord. These channels can support the development and maintenance of both physiological (nociceptive) and pathological (neuropathic) pain. In this review, we summarize the most recent evidence linking the presynaptic CaV3.2 channels to the etiology of neuropathic pain disorders. In particular, we focus on data linking plasticity of CaV3.2 channels with neuropathic pain disorders associated with mechanical peripheral nerve injury and with diabetic peripheral neuropathy. We also discuss the development of potential pain therapies aimed at these channels.

Keywords

T-type channels Calcium Low-voltage-activated Hyperalgesia Allodynia Diabetes Nerve injury 

Notes

Acknowledgments

Our research is supported by American Diabetes Association National Award for Basic Research 7-09-BS-190 (to S.M.T.), Dr. Harold Carron Endowment fund (to V.J-T.) and research funds from the Department of Anesthesiology at the University of Virginia, Charlottesville, VA

References

  1. 1.
    Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284PubMedCrossRefGoogle Scholar
  2. 2.
    Bourinet E, Alloui A, Monteiol A, Barrere C, Couette B, Poirot O, Pages A, McRory J, Snutch TP, Eschalier A, Nargeot J (2005) Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 24:315–324PubMedCrossRefGoogle Scholar
  3. 3.
    Bossu JL, Feltz A, Thomann JM (1985) Depolarization elicits two distinct calcium currents in vertebrate sensory neurons. Pflugers Arch 403:360–368PubMedCrossRefGoogle Scholar
  4. 4.
    Cao XH, Byun HS, Chen SR, Pan HL (2011) Diabetic neuropathy enhances voltage-activated Ca2+ channel activity and its control by M4 muscarinic receptors in primary sensory neurons. J Neurochem 119(3):594–603PubMedCrossRefGoogle Scholar
  5. 5.
    Carbone E, Lux HD (1984) A low-voltage activated, fully inactivating Ca2+ channel in vertebrate sensory neurons. Nature 310:501–502PubMedCrossRefGoogle Scholar
  6. 6.
    Cardenas CG, Del Mar LP, Scroggs RS (1995) Variation in serotonergic inhibition of calcium channel currents in four types of rat sensory neurons differentiated by membrane properties. J Neurophysiol 74:1870–1879PubMedGoogle Scholar
  7. 7.
    Coderre TJ, Katz J, Vaccarino AL, Melzack R (1993) Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 52:259–285PubMedCrossRefGoogle Scholar
  8. 8.
    Choe WJ, Messinger RB, Leach E, Eckle V-S, Obradovic A, Salajegheh R, Jevtovic-Todorovic V, Todorovic SM (2011) TTA-P2 is a potent and selective blocker of T-type calcium channels in rat sensory neurons and a novel antinociceptive agent. Mol Pharmacol 80(5):900–910PubMedCrossRefGoogle Scholar
  9. 9.
    Choi S, Na HS, Kim J, Lee J, Lee S, Kim D, Park J, Chen CC, Campbell KP, Shin HS (2007) Attenuated pain responses in mice lacking CaV3.2 T-type channels. Genes Brain Behav 6(5):425–431PubMedCrossRefGoogle Scholar
  10. 10.
    Chen CC, Lamping KG, Nuno DW, Barresi R, Prouty SJ, Lavoie JL, Cribbs LL, England SK, Sigmund CD, Weiss RM, Williamson RA, Hill JA, Campbell CP (2003) Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science 302:1416–1418PubMedCrossRefGoogle Scholar
  11. 11.
    Coste B, Crest M, Delmas P (2007) Pharmacological dissection and distribution of NaN/Nav1.9, T-type Ca2+ currents, and mechanically activated cation currents in different populations of DRG neurons. J Gen Physiol 129(1):57–77PubMedCrossRefGoogle Scholar
  12. 12.
    Dubreuil AS, Boukhaddaoui H, Desmadryl G, Martinez-Salgado C, Moshourab R, Lewin GR, Carroll P, Valmier J, Scamps F (2004) Role of T-type calcium current in identified d-hair mechanoreceptor neurons studied in vitro. J Neurosci 24:8480–8484PubMedCrossRefGoogle Scholar
  13. 13.
    Dogrul A, Gardell LR, Ossipov MH, Tulunay FC, Lai J, Porecca F (2003) Reversal of experimental neuropathic pain by T-type calcium channel blockers. Pain 105:159–168PubMedCrossRefGoogle Scholar
  14. 14.
    Edwards JL, Vincent AM, Cheng HT, Feldman EL (2008) Diabetic neuropathy: mechanisms to management. Pharmacol Ther 120:1–34PubMedCrossRefGoogle Scholar
  15. 15.
    Fedulova SA, Kostuyak PG, Veselovsky NS (1985) Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurons. J Physiol (London) 359:431–446Google Scholar
  16. 16.
    Fox AP, Nowycky MC, Tsien RW (1987) Single-channel recordings of three types of calcium channels in chick sensory neurones. J Physiol (London) 394:173–200Google Scholar
  17. 17.
    Flatters SJ, Bennett GJ (2004) Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 109(1–2):150–161PubMedCrossRefGoogle Scholar
  18. 18.
    Gooch C, Podwall D (2004) The diabetic neuropathies. Neurologist 10:311–322PubMedCrossRefGoogle Scholar
  19. 19.
    Hall KE, Sima AA, Wiley JW (1995) Voltage-dependent calcium currents are enhanced in dorsal root ganglion neurones from the Bio Bred/Worchester diabetic rat. J Physiol (London) 486(Pt 2):313–322Google Scholar
  20. 20.
    Ikeda H, Stark J, Fischer H, Wagner M, Drdla R, Jäger T, Sandkühler J (2006) Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science 312(5780):1659–1662PubMedCrossRefGoogle Scholar
  21. 21.
    Jacus MO, Uebele VN, Renger JJ, Todorovic SM (2012) Presynaptic CaV3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J Neurosci 32(27):9374–9382PubMedCrossRefGoogle Scholar
  22. 22.
    Jagodic MM, Pathirathna S, Nelson MT, Mancuso S, Joksovic PM, Rosenberg ER, Bayliss DA, Jevtovic-Todorovic V, Todorovic SM (2007) Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J Neurosci 27(12):3305–3316PubMedCrossRefGoogle Scholar
  23. 23.
    Jagodic MM, Pathirathna S, Joksovic PM, Lee W, Nelson MT, Naik AK, Su P, Jevtovic-Todorovic V, Todorovic SM (2008) Up-regulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol 99:3151–3156PubMedCrossRefGoogle Scholar
  24. 24.
    Latham JR, Pathirathna S, Jagodic MM, Choe WJ, Levin ME, Nelson MT, Lee WY, Krishnan K, Covey D, Todorovic SM, Jevtovic-Todorovic V (2009) Selective T-type calcium channel blockade alleviates hyperalgesia in ob/ob mice. Diabetes 58(11):2656–2665PubMedCrossRefGoogle Scholar
  25. 25.
    Levine JD, Reichling DB (1999) Peripheral mechanisms of inflammatory pain. In: Wall PD, Melzack R (eds) Textbook of pain, 4th edn. Churchill Livingstone, London, pp 59–84Google Scholar
  26. 26.
    McCallum JB, Kwok WM, Mynlieff M, Bosnjak ZJ, Hogan QH (2003) Loss of T-type calcium current in sensory neurons of rats with neuropathic pain. Anesthesiol 98:209–216CrossRefGoogle Scholar
  27. 27.
    Messinger RB, Naik AK, Jagodic MM, Nelson MT, Lee WY, Choe WJ, Orestes P, Latham JR, Todorovic SM, Jevtovic-Todorovic V (2009) In-vivo silencing of the Cav3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain 145(1-2):184–195PubMedCrossRefGoogle Scholar
  28. 28.
    Nelson MT, Joksovic PM, Perez-Reyes E, Todorovic SM (2005) The endogenous redox agent L-cysteine induces T-type Ca2+ channel-dependent sensitization of a novel subpopulation of rat peripheral nociceptors. J Neurosci 25:8766–8775PubMedCrossRefGoogle Scholar
  29. 29.
    Nelson MT, Woo J, Kang H-W, Barrett PQ, Vitko J, Perez-Reyes E, Lee J-H, Shin H-S, Todorovic SM (2007) Reducing agents sensitize C-type nociceptors by relieving high-affinity zinc inhibition of T-type calcium channels. J Neurosci 27(31):8250–8260PubMedCrossRefGoogle Scholar
  30. 30.
    Okubo K, Matsumura M, Kawaishi Y, Aoki Y, Matsunami M, Okawa Y, Sekiguchi F, Kawabata A (2012) Hydrogen sulfide-induced mechanical hyperalgesia and allodynia require activation of both CaV3.2 and TRPA1 channels in mice. Br J Pharmacol 166(5):1738–1743PubMedCrossRefGoogle Scholar
  31. 31.
    Pathirathna S, Brimelow BC, Jagodic MM, Kathiresan K, Jiang X, Zorumski CF, Mennerick S, Covey DF, Todorovic SM, Jevtovic-Todorovic V (2005) New evidence that both T-type Ca2+ channels and GABAA channels are responsible for the potent peripheral analgesic effects of 5α-reduced neuroactive steroids. Pain 114:429–443PubMedCrossRefGoogle Scholar
  32. 32.
    Pathirathna S, Todorovic SM, Covey DF, Jevtovic-Todorovic V (2005) 5α-reduced neuroactive steroids alleviate thermal and mechanical hyperalgesia in rats with neuropathic pain. Pain 117:326–339PubMedCrossRefGoogle Scholar
  33. 33.
    Shin JB, Martinez-Salgado C, Heppenstall PA, Lewin GR (2003) A T-type calcium channel required for normal function of a mammalian mechanoreceptor. Nat Neurosci 6(7):724–730PubMedCrossRefGoogle Scholar
  34. 34.
    Takahashi T, Aoki Y, Okubo K, Maeda Y, Sekiguchi F, Mitani K, Nishikawa H, Kawabata A (2010) Upregulation of Ca(v)3.2 T-type calcium channels targeted by endogenous hydrogen sulfide contributes to maintenance of neuropathic pain. Pain 150(1):183–191PubMedCrossRefGoogle Scholar
  35. 35.
    Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911PubMedGoogle Scholar
  36. 36.
    Todorovic SM, Lingle CJ (1998) Pharmacological properties of T-type Ca2+ current in adult rat sensory neurons: Effects of anticonvulsant and anesthetic agents. J Neurophysiol 79:240–252PubMedGoogle Scholar
  37. 37.
    Todorovic SM, Jevtovic-Todorovic V, Meyenburg A, Mennerick S, Perez-Reyes E, Romano C, Olney JW, Zorumski CF (2001) Redox modulation of T-type calcium channels in rat peripheral nociceptors. Neuron 31:75–85PubMedCrossRefGoogle Scholar
  38. 38.
    Todorovic SM, Prakriya M, Nakashima YM, Nilsson KR, Han M, Zorumski CF, Covey DF, Lingle CJ (1998) Enantioselective blockade of t-type Ca2+ current in adult rat sensory neurons by a steroid that lacks γ-aminobutyric acid-modulatory activity. Mol Pharmacol 54:918–927PubMedGoogle Scholar
  39. 39.
    Todorovic SM, Meyenburg A, Jevtovic-Todorovic V (2004) Redox modulation of peripheral T-type Ca2+ channels in vivo: alteration of nerve injury-induced thermal hyperalgesia. Pain 109:328–339PubMedCrossRefGoogle Scholar
  40. 40.
    Todorovic SM, Pathirathna S, Brimelow BC, Jagodic MM, Ko SH, Jiang X, Nilsson KR, Zorumski CF, Covey DF, Jevtovic-Todorovic V (2004) 5β−reduced neuroactive steroids are novel voltage-dependent blockers of T-type Ca2+ channels in rat sensory neurons in vitro and potent peripheral analgesics in vivo. Mol Pharmacol 66:1223–1235PubMedCrossRefGoogle Scholar
  41. 41.
    White G, Lovinger DM, Weight FF (1989) Transient low-threshold Ca2+ current triggers burst firing through an afterdepolarizing potential in an adult mammalian neuron. PNAS USA 86:6802–6806PubMedCrossRefGoogle Scholar
  42. 42.
    Yue J, Liu L, Liu Z, Shu B, Zhang Y (2012) Upregulation of T-type Ca2+ channels in primary sensory neurons in spinal nerve injury. Spine 2012 Epub ahead of printGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Slobodan M. Todorovic
    • 1
    • 2
    • 3
    Email author
  • Vesna Jevtovic-Todorovic
    • 1
    • 2
  1. 1.Department of AnesthesiologyUniversity of Virginia School of MedicineCharlottesvilleUSA
  2. 2.Department of NeuroscienceUniversity of Virginia School of MedicineCharlottesvilleUSA
  3. 3.Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations