Skip to main content
Log in

Probing neuronal activities with genetically encoded optical indicators: from a historical to a forward-looking perspective

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Optical imaging has a long history in physiology and in neurophysiology in particular. Over the past 15 years or so, new methodologies have emerged that combine genetic engineering with light-based imaging methods. This merger has resulted in a tool box of genetically encoded optical indicators that enable nondestructive and long-lasting monitoring of neuronal activities at the cellular, circuit, and system level. This review describes the historical roots and fundamental concepts underlying these new approaches, evaluates current progress in this field, and concludes with a forward-looking perspective on current work and potential future developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahrens KF, Heider B, Lee H, Isacoff EY, Siegel RM (2012) Two-photon scanning microscopy of in vivo sensory responses of cortical neurons genetically encoded with a fluorescent voltage sensor in rat. Front Neural Circuits 6:15

    Article  PubMed  Google Scholar 

  2. Akemann W, Lundby A, Mutoh H, Knöpfel T (2009) Effect of voltage sensitive fluorescent proteins on neuronal excitability. Biophys J 96:3959–3976

    Article  PubMed  CAS  Google Scholar 

  3. Akemann W, Mutoh H, Perron A, Kyung PY, Iwamoto Y, Knöpfel T (2012) Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J Neurophysiol

  4. Akemann W, Mutoh H, Perron A, Rossier J, Knöpfel T (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7:643–649

    Article  PubMed  CAS  Google Scholar 

  5. Ataka K, Pieribone VA (2002) A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys J 82:509–516

    Article  PubMed  CAS  Google Scholar 

  6. Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci USA 96:11241–11246

    Article  PubMed  CAS  Google Scholar 

  7. Baker BJ, Jin L, Han Z, Cohen LB, Popovic M, Platisa J, Pieribone V (2012) Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics. J Neurosci Methods 208:190–196

    Article  PubMed  CAS  Google Scholar 

  8. Baker BJ, Lee H, Pieribone VA, Cohen LB, Isacoff EY, Knöpfel T, Kosmidis EK (2007) Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells. J Neurosci Methods 161:32–38

    Article  PubMed  CAS  Google Scholar 

  9. Baker BJ, Mutoh H, Dimitrov D, Akemann W, Perron A, Iwamoto Y, Jin L, Cohen LB, Isacoff EY, Pieribone VA, Hughes T, Knöpfel T (2008) Genetically encoded fluorescent sensors of membrane potential. Brain Cell Biol 36:53–67

    Article  PubMed  CAS  Google Scholar 

  10. Bozza T, Feinstein P, Zheng C, Mombaerts P (2002) Odorant receptor expression defines functional units in the mouse olfactory system. J Neurosci 22:3033–3043

    PubMed  CAS  Google Scholar 

  11. Bozza T, McGann JP, Mombaerts P, Wachowiak M (2004) In vivo imaging of neuronal activity by targeted expression of a genetically encoded probe in the mouse. Neuron 42:9–21

    Article  PubMed  CAS  Google Scholar 

  12. Cha A, Bezanilla F (1997) Characterizing voltage-dependent conformational changes in the Shaker K + channel with fluorescence. Neuron 19:1127–1140

    Article  PubMed  CAS  Google Scholar 

  13. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene-expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  14. Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102

    Article  PubMed  CAS  Google Scholar 

  15. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Article  PubMed  CAS  Google Scholar 

  16. Cohen LB, Keynes RD, Hille B (1968) Light scattering and birefringence changes during nerve activity. Nature 218:438–441

    Article  PubMed  CAS  Google Scholar 

  17. Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    Article  PubMed  CAS  Google Scholar 

  18. Diez-Garcia J, Matsushita S, Mutoh H, Nakai J, Ohkura M, Yokoyama J, Dimitrov D, Knöpfel T (2005) Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein. Eur J Neurosci 22:627–635

    Article  PubMed  Google Scholar 

  19. Dimitrov D, He Y, Mutoh H, Baker BJ, Cohen L, Akemann W, Knöpfel T (2007) Engineering and characterization of an enhanced fluorescent protein voltage sensor. PLoS One 2:e440

    Article  PubMed  Google Scholar 

  20. Ding Y, Ai HW, Hoi H, Campbell RE (2011) Forster resonance energy transfer-based biosensors for multiparameter ratiometric imaging of Ca2+ dynamics and caspase-3 activity in single cells. Anal Chem 83:9687–9693

    Article  PubMed  CAS  Google Scholar 

  21. Dombeck DA, Harvey CD, Tian L, Looger LL, Tank DW (2010) Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13:1433–1440

    Article  PubMed  CAS  Google Scholar 

  22. Dreosti E, Odermatt B, Dorostkar MM, Lagnado L (2009) A genetically encoded reporter of synaptic activity in vivo. Nat Methods 6:883–889

    Article  PubMed  CAS  Google Scholar 

  23. Dulla C, Tani H, Okumoto S, Frommer WB, Reimer RJ, Huguenard JR (2008) Imaging of glutamate in brain slices using FRET sensors. J Neurosci Methods 168:306–319

    Article  PubMed  CAS  Google Scholar 

  24. Gautam SG, Perron A, Mutoh H, Knöpfel T (2009) Exploration of fluorescent protein voltage probes based on circularly permuted fluorescent proteins. Front Neuroengineering 2:14

    CAS  Google Scholar 

  25. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885

    Article  PubMed  CAS  Google Scholar 

  26. Grinvald A, Frostig RD, Lieke E, Hildesheim R (1988) Optical imaging of neuronal-activity. Physiol Rev 68:1285–1366

    PubMed  CAS  Google Scholar 

  27. Grinvald A, Hildesheim R (2004) VSDI: A new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5:874–885

    Article  PubMed  CAS  Google Scholar 

  28. Grinvald A, Salzberg BM, Cohen LB (1977) Simultaneous recording from several neurones in an invertebrate central nervous system. Nature 268:140–142

    Article  PubMed  CAS  Google Scholar 

  29. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  30. Harney SC, Rowan M, Anwyl R (2006) Long-term depression of NMDA receptor-mediated synaptic transmission is dependent on activation of metabotropic glutamate receptors and is altered to long-term potentiation by low intracellular calcium buffering. J Neurosci 26:1128–1132

    Article  PubMed  CAS  Google Scholar 

  31. Harvey CD, Coen P, Tank DW (2012) Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484:62–68

    Article  PubMed  CAS  Google Scholar 

  32. He Y, Dimitrov D, Mutoh H, Baker BJ, Cohen L, Knöpfel T (2007) A fluorescent protein voltage probe based on the voltage sensing domain of Ci-VSP. Biophys J 330A

  33. Heim N, Griesbeck O (2004) Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. J Biol Chem 279:14280–14286

    Article  PubMed  CAS  Google Scholar 

  34. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  PubMed  CAS  Google Scholar 

  35. Hires SA, Tian L, Looger LL (2008) Reporting neural activity with genetically encoded calcium indicators. Brain Cell Biol 36:69–86

    Article  PubMed  CAS  Google Scholar 

  36. Hires SA, Zhu Y, Tsien RY (2008) Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci USA 105:4411–4416

    Article  PubMed  CAS  Google Scholar 

  37. Horikawa K, Yamada Y, Matsuda T, Kobayashi K, Hashimoto M, Matsu-ura T, Miyawaki A, Michikawa T, Mikoshiba K, Nagai T (2010) Spontaneous network activity visualized by ultrasensitive Ca(2+) indicators, yellow Cameleon-Nano. Nat Methods 7:729–732

    Article  PubMed  CAS  Google Scholar 

  38. Huber D, Gutnisky DA, Peron S, O'Connor DH, Wiegert JS, Tian L, Oertner TG, Looger LL, Svoboda K (2012) Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484:473–478

    Article  PubMed  CAS  Google Scholar 

  39. Iguchi M, Kato M, Nakai J, Takeda T, Matsumoto-Ida M, Kita T, Kimura T, Akao M (2011) Direct monitoring of mitochondrial calcium levels in cultured cardiac myocytes using a novel fluorescent indicator protein, GCaMP2-mt. Int. J, Cardiol

    Google Scholar 

  40. Inouye S, Noguchi M, Sakaki Y, Takagi Y, Miyata T, Iwanaga S, Miyata T, Tsuji FI (1985) Cloning and sequence analysis of cDNA for the luminescent protein aequorin. Proc Natl Acad Sci USA 82:3154–3158

    Article  PubMed  CAS  Google Scholar 

  41. Jin L, Baker B, Mealer R, Cohen L, Pieribone V, Pralle A, Hughes T (2011) Random insertion of split-cans of the fluorescent protein venus into Shaker channels yields voltage sensitive probes with improved membrane localization in mammalian cells. J Neurosci Methods 199:1–9

    Article  PubMed  CAS  Google Scholar 

  42. Knöpfel T, Diez-Garcia J, Akemann W (2006) Optical probing of neuronal circuit dynamics: genetically encoded versus classical fluorescent sensors. Trends Neurosci 29:160–166

    Article  PubMed  Google Scholar 

  43. Knöpfel T, Gahwiler BH (1992) Activity-induced elevations of intracellular calcium concentration in pyramidal and nonpyramidal cells of the CA3 region of rat hippocampal slice cultures. J Neurophysiol 68:961–963

    PubMed  Google Scholar 

  44. Knöpfel T, Guatteo E, Bernardi G, Mercuri NB (1998) Hyperpolarization induces a rise in intracellular sodium concentration in dopamine cells of the substantia nigra pars compacta. Eur J Neurosci 10:1926–1929

    Article  PubMed  Google Scholar 

  45. Knöpfel T, Vranesic I, Staub C, Gahwiler BH (1991) Climbing fibre responses in olivo-cerebellar slice cultures. II. Dynamics of cytosolic calcium in Purkinje cells. Eur J Neurosci 3:343–348

    Article  PubMed  Google Scholar 

  46. Kotlikoff MI (2007) Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology. J Physiol 578:55–67

    Article  PubMed  CAS  Google Scholar 

  47. Kralj JM, Douglass AD, Hochbaum DR, Maclaurin D, Cohen AE (2012) Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat Methods 9:90–95

    Article  CAS  Google Scholar 

  48. Kralj JM, Hochbaum DR, Douglass AD, Cohen AE (2011) Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 333:345–348

    Article  PubMed  CAS  Google Scholar 

  49. Lasser-Ross N, Ross WN (1992) Imaging voltage and synaptically activated sodium transients in cerebellar Purkinje cells. Proc Biol Sci 247:35–39

    Article  PubMed  CAS  Google Scholar 

  50. Li Y, Tsien RW (2012) pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat Neurosci

  51. Lundby A, Mutoh H, Dimitrov D, Akemann W, Knöpfel T (2008) Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS One 3:e2514

    Article  PubMed  Google Scholar 

  52. Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O (2006) A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 90:1790–1796

    Article  PubMed  CAS  Google Scholar 

  53. Mannuzzu LM, Moronne MM, Isacoff EY (1996) Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271:213–216

    Article  PubMed  CAS  Google Scholar 

  54. Marandi N, Konnerth A, Garaschuk O (2002) Two-photon chloride imaging in neurons of brain slices. Pflugers Arch 445:357–365

    Article  PubMed  CAS  Google Scholar 

  55. Marcaggi P, Mutoh H, Dimitrov D, Beato M, Knopfel T (2009) Optical measurement of mGluR1 conformational changes reveals fast activation, slow deactivation, and sensitization. Proc Natl Acad Sci USA 106:11388–11393

    Article  PubMed  CAS  Google Scholar 

  56. Meyer TM, Munsch T, Pape HC (2000) Activity-related changes in intracellular pH in rat thalamic relay neurons. Neuroreport 11:33–37

    Article  PubMed  CAS  Google Scholar 

  57. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  PubMed  CAS  Google Scholar 

  58. Miesenbock G, Rothman JE (1997) Patterns of synaptic activity in neural networks recorded by light emission from synaptolucins. Proc Natl Acad Sci USA 94:3402–3407

    Article  PubMed  CAS  Google Scholar 

  59. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  PubMed  CAS  Google Scholar 

  60. Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:1239–1243

    Article  PubMed  CAS  Google Scholar 

  61. Muri R, Knöpfel T (1994) Activity induced elevations of intracellular calcium concentration in neurons of the deep cerebellar nuclei. J Neurophysiol 71:420–428

    PubMed  CAS  Google Scholar 

  62. Mutoh H, Perron A, Akemann W, Iwamoto Y, Knöpfel T (2011) Optogenetic monitoring of membrane potentials. Exp Physiol 96:13–18

    Article  PubMed  Google Scholar 

  63. Mutoh H, Perron A, Dimitrov D, Iwamoto Y, Akemann W, Chudakov DM, Knöpfel T (2009) Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes. PLoS One 4:e4555

    Article  PubMed  Google Scholar 

  64. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141

    Article  PubMed  CAS  Google Scholar 

  65. Okumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, Frommer WB (2005) Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc Natl Acad Sci USA 102:8740–8745

    Article  PubMed  CAS  Google Scholar 

  66. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13:521–530

    Article  PubMed  CAS  Google Scholar 

  67. Pan B, Zucker RS (2009) A general model of synaptic transmission and short-term plasticity. Neuron 62:539–554

    Article  PubMed  CAS  Google Scholar 

  68. Perron A, Akemann W, Mutoh H, Knöpfel T (2012) Genetically encoded probes for optical imaging of brain electrical activity. Prog Brain Res 196:63–77

    Article  PubMed  CAS  Google Scholar 

  69. Perron A, Mutoh H, Akemann W, Gautam SG, Dimitrov D, Iwamoto Y, Knöpfel T (2009) Second and third generation voltage-sensitive fluorescent proteins for monitoring membrane potential. Front Mol Neurosci 2:5

    Article  PubMed  Google Scholar 

  70. Perron A, Mutoh H, Launey T, Knöpfel T (2009) Red-shifted voltage-sensitive fluorescent proteins. Chem Biol 16:1268–1277

    Article  PubMed  CAS  Google Scholar 

  71. Pologruto TA, Yasuda R, Svoboda K (2004) Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J Neurosci 24:9572–9579

    Article  PubMed  CAS  Google Scholar 

  72. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  PubMed  CAS  Google Scholar 

  73. Prasher D, McCann RO, Cormier MJ (1985) Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochem Biophys Res Commun 126:1259–1268

    Article  PubMed  CAS  Google Scholar 

  74. Reichinnek S (2012) A.von Kameke, A.M. Hagenston, E. Freitag, F.C. Roth, H. Bading, M.T. Hasan, A. Draguhn, M. Both, Reliable optical detection of coherent neuronal activity in fast oscillating networks in vitro. Neuroimage 60:139–152

    Article  PubMed  Google Scholar 

  75. Ridgway EB, Ashley CC (1967) Calcium transients in single muscle fibers. Biochem Biophys Res Commun 29:229–234

    Article  PubMed  CAS  Google Scholar 

  76. Rizzuto R, Simpson AW, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358:325–327

    Article  PubMed  CAS  Google Scholar 

  77. Romoser VA, Hinkle PM, Persechini A (1997) Detection in living cells of Ca2 + −dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. A new class of fluorescent indicators. J Biol Chem 272:13270–13274

    Article  PubMed  CAS  Google Scholar 

  78. Ross WN, Lasser-Ross N, Werman R (1990) Spatial and temporal analysis of calcium-dependent electrical activity in guinea pig Purkinje cell dendrites. Proc R Soc Lond B Biol Sci 240:173–185

    Article  PubMed  CAS  Google Scholar 

  79. Ross WN, Salzberg BM, Cohen LB, Davila HV (1974) A large change in dye absorption during the action potential. Biophys J 14:983–986

    Article  PubMed  CAS  Google Scholar 

  80. Ross WN, Werman R (1987) Mapping calcium transients in the dendrites of Purkinje cells from the guinea-pig cerebellum in vitro. J Physiol 389:319–336

    PubMed  CAS  Google Scholar 

  81. Ryan TA, Reuter H, Wendland B, Schweizer FE, Tsien RW, Smith SJ (1993) The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11:713–724

    Article  PubMed  CAS  Google Scholar 

  82. Sakai R, Repunte-Canonigo V, Raj CD, Knopfel T (2001) Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 13:2314–2318

    Article  PubMed  CAS  Google Scholar 

  83. Siegel MS, Isacoff EY (1997) A genetically encoded optical probe of membrane voltage. Neuron 19:735–741

    Article  PubMed  CAS  Google Scholar 

  84. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  PubMed  CAS  Google Scholar 

  85. Tsien RY (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290:527–528

    Article  PubMed  CAS  Google Scholar 

  86. Tsutsui H, Karasawa S, Okamura Y, Miyawaki A (2008) Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Methods 5:683–685

    Article  PubMed  CAS  Google Scholar 

  87. Wachowiak M, Cohen LB (2001) Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron 32:723–735

    Article  PubMed  CAS  Google Scholar 

  88. Yamada Y, Michikawa T, Hashimoto M, Horikawa K, Nagai T, Miyawaki A, Hausser M, Mikoshiba K (2011) Quantitative comparison of genetically encoded Ca indicators in cortical pyramidal cells and cerebellar Purkinje cells. Front Cell Neurosci 5:18

    Article  PubMed  CAS  Google Scholar 

  89. Zariwala HA, Borghuis BG, Hoogland TM, Madisen L, Tian L, De Zeeuw CI, Zeng H, Looger LL, Svoboda K, Chen TW (2012) A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. J Neurosci 32:3131–3141

    Article  PubMed  CAS  Google Scholar 

  90. Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE (2011) An expanded palette of genetically encoded Ca(2)(+) indicators. Science 333:1888–1891

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all present and past members of the Knöpfel Laboratory for contributions, support, and discussions. Work in the laboratory has received funding from RIKEN, the Japanese Society for Promotion of Science, the Human Frontiers Science Program, the US National Institutes of Health, and Ministry of Education, Culture, Sport, Science and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Knöpfel.

Additional information

This article is published as part of the Special Issue on “Measuring and manipulating biochemical signals, mechanical forces and metabolites in living cells, tissues and organisms".

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutoh, H., Knöpfel, T. Probing neuronal activities with genetically encoded optical indicators: from a historical to a forward-looking perspective. Pflugers Arch - Eur J Physiol 465, 361–371 (2013). https://doi.org/10.1007/s00424-012-1202-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1202-z

Keywords

Navigation