AT2 receptors: beneficial counter-regulatory role in cardiovascular and renal function

Invited Review

Abstract

The renin–angiotensin system (RAS) is a coordinated hormonal cascade intimately involved in cardiovascular and renal control and blood pressure regulation. Angiotensin II (Ang II), the major RAS effector peptide, binds two distinct receptors, the angiotensin type-1 receptor (AT1R) and the angiotensin type-2 (AT2R) receptor. The vast majority of the physiological actions of Ang II, almost all of them detrimental, are mediated by AT1Rs. In contrast, AT2Rs negatively modulate the actions of AT1Rs under the majority of circumstances and generally possess beneficial effects. AT2Rs induce vasodilation in both resistance and capacitance vessels, mediating natriuresis directly and via interactions with dopamine D1 receptors in the renal proximal tubule. AT2Rs inhibit renin biosynthesis and secretion and protect the kidneys from inflammation and ischemic injury. Our understanding of the exact role of AT2Rs in physiology and pathophysiology continues to expand; the purpose of this review is to provide an up-to-date summary of the functional role of AT2Rs at the organ, tissue, cellular, and subcellular levels with emphasis on the vascular and renal actions that bear on blood pressure regulation and hypertension.

Keywords

Angiotensin Dopamine Receptor Bradykinin Nitric oxide Cyclic GMP Natriuresis Blood pressure Hypertension AT2 receptor 

References

  1. 1.
    Abadir PM, Carey RM, Siragy HM (2003) Angiotensin AT2 receptors directly stimulate renal nitric oxide in bradykinin B2-receptor-null mice. Hypertension 42:600–604PubMedCrossRefGoogle Scholar
  2. 2.
    Abadir PM, Foster DB, Crow M, Cooke CA, Rucker JJ, Jain A, Smith BJ, Burks TN, Cohn RD, Fedarko NS, Carey RM, O'Rourke F, Walston JD (2011) Identification and characterization of a functional mitochondrial angiotensin system. Proc Nat Acad Sci 108:14849–14854PubMedCrossRefGoogle Scholar
  3. 3.
    Abadir PM, Walston JD, Carey RM, Siragy HM (2011) Angiotensin type-2 receptors modulate inflammation through signal transducer and activator of transcription proteins 3 phosphorylation and TNFα production. J Interf Cytokine Res 31:471–474CrossRefGoogle Scholar
  4. 4.
    Batenburg WW, Garrelds IM, Bernasconi CC, Juillerat-Jeanneret L, van Kats JP, Saxena PR, Danser AH (2004) Angiotensin II type 2 receptor-mediated vasodilation in human coronary microarteries. Circulation 109:2296–2301PubMedCrossRefGoogle Scholar
  5. 5.
    Benigni A, Corna D, Zoja C, Sonqogni A, Latini R, Salio M, Conti S, Rottoli D, Langaretti L, Cassis P, Morigi M, Coffman TM, Remuzzi G (2009) Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 119:524–530PubMedCrossRefGoogle Scholar
  6. 6.
    Bergaya S, Hilgers RH, Meneton P, Dong Y, Bloch-Faure M, Inagami T, Alhenc-Gelas F, Levy BI, Boulanger CM (2004) Flow-dependent dilation mediated by endogenous kinins requires angiotensin AT2 receptors. Circ Res 94:1623–1629PubMedCrossRefGoogle Scholar
  7. 7.
    Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG (2001) Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol 281:H2337–H2365PubMedGoogle Scholar
  8. 8.
    Bonnet F, Cooper ME, Carey RM, Casley D, Cao Z (2001) Vascular expression of angiotensin type 2 receptor in the adult rat: influence of angiotensin II infusion. J Hypertens 19:1075–1081PubMedCrossRefGoogle Scholar
  9. 9.
    Bosnyak S, Welungoda IK, Hallberg A, Alterman M, Widdop RE, Jones ES. Stimulation of angiotensin AT2 receptors by the non-peptide agonist, Compound 21, evokes vasodepressor effects in conscious spontaneously hypertensive rats. Br J Pharmacol.159:709-716Google Scholar
  10. 10.
    Bosnyak S, Jones ES, Christopoulos A, Aguilar MI, Thomas WG, Widdop RE (2011) Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin Sci (Lond) 121:297–303Google Scholar
  11. 11.
    Brismar H, Asghar M, Carey RM, Greengard P, Aperia A (1998) Dopamine-induced recruitment of dopamine D1 receptors to the plasma membrane. Proc Natl Acad Sci U S A 95:5573–5578PubMedCrossRefGoogle Scholar
  12. 12.
    Brown RD, Hilliard LM, Head GA, Jones ES, Widdop RE, Denton KM (2012) Sex differences in the pressor and tubuloglomerular feedback response to angiotensin II. Hypertension 59:129–135PubMedCrossRefGoogle Scholar
  13. 13.
    Carey RM (2001) Theodore Cooper lecture: renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure. Hypertension 38:297–302PubMedCrossRefGoogle Scholar
  14. 14.
    Carey RM (2005) Cardiovascular and renal regulation by the angiotensin type 2 receptor: the AT2 receptor comes of age. Hypertension 45:840–844PubMedCrossRefGoogle Scholar
  15. 15.
    Carey RM, Howell NL, Jin XH, Siragy HM (2001) Angiotensin type 2 receptor-mediated hypotension in angiotensin type-1 receptor-blocked rats. Hypertension 38:1272–1277PubMedCrossRefGoogle Scholar
  16. 16.
    Carey RM, Siragy HM (2003) Newly recognized components of the renin–angiotensin system: potential roles in cardiovascular and renal disease. Endocr Rev 24:261–271PubMedCrossRefGoogle Scholar
  17. 17.
    Chai SY, Fernando R, Peck G, Ye SY, Mendelsohn FA, Jenkins TA, Albiston AL (2004) The angiotensin IV/AT4 receptor. Cell Mol Life Sci 61:2728–2737PubMedCrossRefGoogle Scholar
  18. 18.
    de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472PubMedGoogle Scholar
  19. 19.
    Gauthier KM, Zhang DX, Edwards EM, Holmes B, Campbell WB (2005) Angiotensin II dilates bovine adrenal cortical arterioles: role of endothelial nitric oxide. Endocrinology 146:3319–3324PubMedCrossRefGoogle Scholar
  20. 20.
    Gwathmey TM, Shaltout HA, Pendergrass KD, Pirro NT, Figueroa JP, Rose JC, Diz DI, Chappell MC (2009) Nuclear angiotensin II type 2 (AT2) receptors are functionally linked to nitric oxide production. Am J Physiol Renal Physiol 296:F1484–F1493PubMedCrossRefGoogle Scholar
  21. 21.
    Gwathmey TM, Shaltout HA, Rose JC, Diz DI, Chappell MC (2011) Glucocorticoid-induced fetal programming alters the functional complement of angiotensin receptor subtypes within the kidney. Hypertension 57:620–626PubMedCrossRefGoogle Scholar
  22. 22.
    Habashi JP, Doyle JJ, Holm TM, Aziz H, Schoenhoff F, Bedja D, Chen Y, Modiri AN, Judge DP, Dietz HC. Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science.332:361-365Google Scholar
  23. 23.
    Hakam AC, Hussain T (2005) Renal angiotensin II type-2 receptors are upregulated and mediate the candesartan-induced natriuresis/diuresis in obese Zucker rats. Hypertension 45:270–275PubMedCrossRefGoogle Scholar
  24. 24.
    Hakam AC, Hussain T (2006) Angiotensin II AT2 receptors inhibit proximal tubular Na + –K + –ATPase activity via a NO/cGMP-dependent pathway. Am J Physiol Renal Physiol 290:F1430–F1436PubMedCrossRefGoogle Scholar
  25. 25.
    Hakam AC, Hussein T (2006) Angiotensin type 2 receptor agonist directly inhibits proximal tubule sodium pump activity in obese but not lean Zucker rats. Hypertension 47:1117–1124PubMedCrossRefGoogle Scholar
  26. 26.
    Hakam AC, Siddiqui AH, Hussain T (2006) Renal angiotensin II AT2 receptors promote natriuresis in streptozotocin-induced diabetic rats. Am J Physiol Renal Physiol 290:F503–F508PubMedCrossRefGoogle Scholar
  27. 27.
    Hannan RE, Davis EA, Widdop RE (2003) Functional role of angiotensin II AT2 receptor in modulation of AT1 receptor-mediated contraction in rat uterine artery: involvement of bradykinin and nitric oxide. Br J Pharmacol 140:987–995PubMedCrossRefGoogle Scholar
  28. 28.
    Hashimoto N, Maeshima Y, Satoh M, Odawara M, Sugiyama H, Kashihara N, Matsubara H, Yamasaki Y, Makino H (2004) Overexpression of angiotensin type 2 receptor ameliorates glomerular injury in a mouse remnant kidney model. Am J Physiol Renal Physiol 286:F516–F525PubMedCrossRefGoogle Scholar
  29. 29.
    Herrera M, Garvin JL (2010) Angiotensin II stimulates thick ascending limb NO production via AT(2) receptors and Akt1-dependent nitric oxide synthase 3 (NOS3) activation. J Biol Chem 285:14932–14940PubMedCrossRefGoogle Scholar
  30. 30.
    Hilliard LM, Jones ES, Steckelings UM, Unger TM, Widdop RE, Denton KM (2012) Sex-specific influence of angiotensin type 2 receptor stimulation on renal function: a novel therapeutic target for hypertension. Hypertension 59:409–414PubMedCrossRefGoogle Scholar
  31. 31.
    Hilliard LM, Nematbakhsh M, Kett MM, Teichman E, Sampson AK, Widdop RE, Evans RG, Denton KM. Gender differences in pressure-natriuresis and renal autoregulation: role of the angiotensin type 2 receptor. Hypertension. 2011;57:275-282Google Scholar
  32. 32.
    Hiyoshi H, Yayama K, Takano M, Okamoto H (2004) Stimulation of cyclic GMP production via AT2 and B2 receptors in the pressure-overloaded aorta after banding. Hypertension 43:1258–1263PubMedCrossRefGoogle Scholar
  33. 33.
    Holtback U, Brismar H, DiBona GF, Fu M, Greengard P, Aperia A (1999) Receptor recruitment: a mechanism for interactions between G protein-coupled receptors. Proc Natl Acad Sci U S A 96:7271–7275PubMedCrossRefGoogle Scholar
  34. 34.
    Hong NJ, Garvin JL (2012) Angiotensin II type 2 receptor-mediated inhibition of NaCl absorption is blunted in thick ascending limbs from Dahl salt-sensitive rats. Hypertension 60(3):765–769Google Scholar
  35. 35.
    Jones ES, Vinh A, McCarthy CA, Gaspari TA, Widdop RE (2008) AT2 receptors: functional relevance in cardiovascular disease. Pharmacol Ther 120:292–316PubMedCrossRefGoogle Scholar
  36. 36.
    Katada J, Majima M (2002) AT(2) receptor-dependent vasodilation is mediated by activation of vascular kinin generation under flow conditions. Br J Pharmacol 136:484–491PubMedCrossRefGoogle Scholar
  37. 37.
    Kemp BA, Bell JF, Rottkamp DM, Howell NL, Shao W, Navar LG, Carey RM. Intrarenal angiotensin II is the predominant agonist for proximal tubule angiotensin type 2 receptors. Hypertension 2012; e-pub ahead of printGoogle Scholar
  38. 38.
    Kruse MS, Adachi S, Scott L, Holtback U, Greengard P, Aperia A, Brismar H (2003) Recruitment of renal dopamine 1 receptors requires an intact microtubulin network. Pflugers Arch 445:534–539PubMedGoogle Scholar
  39. 39.
    Lerman LO, Textor SC, Grande JP (2009) Mechanisms of tissue injury in renal artery stenosis: ischemia and beyond. Prog Cardiovasc Dis 52:196–203PubMedCrossRefGoogle Scholar
  40. 40.
    Linz W, Heitsch H, Scholkens BA, Wiemer G (2000) Long-term angiotensin II type 1 receptor blockade with fonsartan doubles the lifespan of hypertensive rats. Hypertension 35:908–913PubMedCrossRefGoogle Scholar
  41. 41.
    Matavelli LC, Huang J, Siragy HM (2011) Angiotensin AT2 receptor stimulation inhibits early renal inflammation in renovascular hypertension. Hypertension 57:308–313PubMedCrossRefGoogle Scholar
  42. 42.
    Miyata N, Park F, Li XF, Cowley AW Jr (1999) Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney. Am J Physiol Renal Physiol 277:F437–F446Google Scholar
  43. 43.
    Okumura M, Iwai M, Ide A, Mogi M, Ito M, Horiuchi M (2005) Sex difference in vascular injury and the vasoprotective effect of valsartan are related to differential AT2 receptor expression. Hypertension 46:577–583PubMedCrossRefGoogle Scholar
  44. 44.
    Ozono R, Wang Z-Q, Moore AF, Inagami T, Siragy HM, Carey RM (1997) Expression of the subtype 2 angiotensin (AT2) receptor protein in rat kidney. Hypertension 30:1238–1246PubMedCrossRefGoogle Scholar
  45. 45.
    Padia SH, Howell NL, Siragy HM, Carey RM (2006) Renal angiotensin type 2 receptors mediate natriuresis via angiotensin III in the angiotensin II type 1 receptor-blocked rat. Hypertension 47:537–544PubMedCrossRefGoogle Scholar
  46. 46.
    Padia SH, Kemp BA, Howell NL, Fournie-Zaluski MC, Roques BP, Carey RM (2008) Conversion of renal angiotensin II to angiotensin III is critical for AT2 receptor-mediated natriuresis in rats. Hypertension 51:460–465PubMedCrossRefGoogle Scholar
  47. 47.
    Padia SH, Kemp BA, Howell NL, Keller SR, Gildea JJ, Carey RM (2012) Mechanisms of dopamine D(1) and angiotensin type 2 receptor interaction in natriuresis. Hypertension 59:437–445PubMedCrossRefGoogle Scholar
  48. 48.
    Padia SH, Kemp BA, Howell NL, Siragy HM, Fournie-Zaluski MC, Roques BP, Carey RM (2007) Intrarenal aminopeptidase N inhibition augments natriuretic responses to angiotensin III in angiotensin type 1 receptor-blocked rats. Hypertension 49:625–630PubMedCrossRefGoogle Scholar
  49. 49.
    Park J, Kemp BA, Howell NL, Gildea JJ, Keller SR, Carey RM (2008) Intact microtubules are required for natriuretic responses to nitric oxide and increased renal perfusion pressure. Hypertension 51:494–499PubMedCrossRefGoogle Scholar
  50. 50.
    Perlegas D, Xie H, Sinha S, Somlyo AV, Owens GK (2005) ANG II type 2 receptor regulates smooth muscle growth and force generation in late fetal mouse development. Am J Physiol Heart Circ Physiol 288:H96–H102PubMedCrossRefGoogle Scholar
  51. 51.
    Reaux-Le Goazigo A, Iturrioz X, Fassot C, Claperon C, Roques BP, Llorens-Cortes C. Role of angiotensin III in hypertension. Curr Hypertens Rep. 2005;7:128-134Google Scholar
  52. 52.
    Sabuhi R, Asghar M, Hussain T. Inhibition of NAD(P)H oxidase potentiates AT2 receptor agonist-induced natriuresis in Sprague–Dawley rats. Am J Physiol Renal Physiol.299:F815-820Google Scholar
  53. 53.
    Salomone LJ, Howell NL, McGrath HE, Kemp BA, Keller SR, Gildea JJ, Felder RA, Carey RM (2007) Intrarenal dopamine D1-like receptor stimulation induces natriuresis via an angiotensin type-2 receptor mechanism. Hypertension 49:155–161PubMedCrossRefGoogle Scholar
  54. 54.
    Santos RA, Campagnole-Santos MJ, Andrade SP (2000) Angiotensin-(1-7): an update. Regul Pept 91:45–62PubMedCrossRefGoogle Scholar
  55. 55.
    Santos RA, Ferreira AJ, Pinheiro SV, Sampaio WO, Touyz R, Campagnole-Santos MJ (2005) Angiotensin-(1-7) and its receptor as a potential targets for new cardiovascular drugs. Expert Opin Investig Drugs 14:1019–1031PubMedCrossRefGoogle Scholar
  56. 56.
    Santos RA, Ferreira AJ, Simoes ESAC (2008) Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis. Exp Physiol 93:519–527PubMedCrossRefGoogle Scholar
  57. 57.
    Savoia C, Ebrahimian T, He Y, Gratton JP, Schiffrin EL, Touyz RM (2006) Angiotensin II/AT2 receptor-induced vasodilation in stroke-prone spontaneously hypertensive rats involves nitric oxide and cGMP-dependent protein kinase. J Hypertens 24:2417–2422PubMedCrossRefGoogle Scholar
  58. 58.
    Savoia C, Touyz RM, Volpe M, Schiffrin EL (2007) Angiotensin type 2 receptor in resistance arteries of type 2 diabetic hypertensive patients. Hypertension 49:341–346PubMedCrossRefGoogle Scholar
  59. 59.
    Siddiqui AH, Ali Q, Hussain T (2009) Protective role of angiotensin II subtype 2 receptor in blood pressure increase in obese Zucker rats. Hypertension 53:256–261PubMedCrossRefGoogle Scholar
  60. 60.
    Siragy HM, Carey RM (1996) The subtype-2 (AT2) angiotensin receptor regulates renal cyclic guanosine 3′,5′-monophosphate and AT1 receptor-mediated prostaglandin E2 production in conscious rats. J Clin Invest 97:1978–1982PubMedCrossRefGoogle Scholar
  61. 61.
    Siragy HM, Carey RM (1997) The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest 100:264–269PubMedCrossRefGoogle Scholar
  62. 62.
    Siragy HM, Carey RM (1999) Protective role of the angiotensin AT2 receptor in a renal wrap hypertension model. Hypertension 33:1237–1242PubMedCrossRefGoogle Scholar
  63. 63.
    Siragy HM, de Gasparo M, Carey RM (2000) Angiotensin type 2 receptor mediates valsartan-induced hypotension in conscious rats. Hypertension 35:1074–1077PubMedCrossRefGoogle Scholar
  64. 64.
    Siragy HM, Jaffa AA, Margolius HS (1997) Bradykinin B2 receptor modulates renal prostaglandin E2 and nitric oxide. Hypertension 29:757–762PubMedCrossRefGoogle Scholar
  65. 65.
    Siragy HM, Jaffa AA, Margolius HS, Carey RM (1996) Renin–angiotensin system modulates renal bradykinin production. Am J Physiol Reg Int Comp Physiol 271(Pt 2):R1090–R1095Google Scholar
  66. 66.
    Siragy HM, Xue C, Abadir P, Carey RM (2005) Angiotensin subtype-2 receptors inhibit renin biosynthesis and angiotensin II formation. Hypertension 45:133–137PubMedGoogle Scholar
  67. 67.
    Steckelings UM, Ludovit P, Namsolleck P, Unger T (2012) AT2 receptor agonists: hypertension and beyond. Curr Opin Nephrol Hypertens 21:142–146PubMedCrossRefGoogle Scholar
  68. 68.
    Tesanovic S, Vinh A, Gaspari TA, Casley D, Widdop RE. Vasoprotective and atheroprotective effects of angiotensin (1-7) in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol.30:1606-1613Google Scholar
  69. 69.
    Tsutsumi Y, Matsubara H, Masaki H, Kurihara H, Murasawa S, Takai S, Miyazaki M, Nozawa Y, Ozono R, Nakagawa K, Miwa T, Kawada N, Mori Y, Shibasaki Y, Tanaka Y, Fujiyama S, Koyama Y, Fujiyama A, Takahashi H, Iwasaka T (1999) Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J Clin Invest 104:925–935PubMedCrossRefGoogle Scholar
  70. 70.
    van Esch JH, Oosterveer CR, Batenburg WW, van Veghel R (2008) Jan Danser AH. Effects of angiotensin II and its metabolites in the rat coronary vascular bed: is angiotensin III the preferred ligand of the angiotensin AT2 receptor? Eur J Pharmacol 588:286–293PubMedCrossRefGoogle Scholar
  71. 71.
    Vazquez E, Coronel I, Bautista R, Romo E, Villalon CM, Avila-Casado MC, Soto V, Escalante B (2005) Angiotensin II-dependent induction of AT(2) receptor expression after renal ablation. Am J Physiol Renal Physiol 288:F207–F213PubMedCrossRefGoogle Scholar
  72. 72.
    Wang Z-Q, Moore AF, Ozono R, Siragy HM, Carey RM (1998) Immunolocalization of subtype 2 angiotensin II (AT2) receptor protein in rat heart. Hypertension 32:78–83PubMedCrossRefGoogle Scholar
  73. 73.
    Widdop RE, Jones ES, Hannan RE, Gaspari TA (2003) Angiotensin AT2 receptors: cardiovascular hope or hype? Br J Pharmacol 140:809–824PubMedCrossRefGoogle Scholar
  74. 74.
    Widdop RE, Matrougui K, Levy BI, Henrion D (2002) AT2 receptor-mediated relaxation is preserved after long-term AT1 receptor blockade. Hypertension 40:516–520PubMedCrossRefGoogle Scholar
  75. 75.
    Yang J, Chen C, Ren H, Han Y, He D, Zhou L, Hopfer U, Jose PA, Zeng C. Angiotensin II AT2 receptor decreases AT1 receptor expression and function via nitric oxide/cGMP/Sp1 in renal proximal tubule cells from Wistar–Kyoto rats. J Hypertens.30:1176-1184Google Scholar
  76. 76.
    Yatabe J, Yoneda M, Yatabe MS, Watanabe T, Felder RA, Jose PA, Sanada H. Angiotensin III stimulates aldosterone secretion from adrenal gland partially via angiotensin II type 2 receptor but not angiotensin II type 1 receptor. Endocrinology.152:1582-1588Google Scholar
  77. 77.
    Yayama K, Horii M, Hiyoshi H, Takano M, Okamoto H, Kagota S, Kunitomo M (2004) Up-regulation of angiotensin II type 2 receptor in rat thoracic aorta by pressure-overload. J Pharmacol Exp Ther 308:736–743PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang Y, Norian JM, Magyar CE, Holstein-Rathlou NH, Mircheff AK, McDonough AA (1999) In vivo PTH provokes apical NHE3 and NaPi2 redistribution and Na–K–ATPase inhibition. Am J Physiol REnal Physiol 276(Pt 2):F711–F719Google Scholar
  79. 79.
    Zhuo JAA, Alcorn D, Aldred GP, MacGregor DP, Mendelsohn FA (1995) The distribution of angiotensin II receptors. Hypertension 35:155–163Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Division of Endocrinology and Metabolism, Department of MedicineUniversity of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations