Skip to main content

Advertisement

Log in

Angiotensin receptor-associated proteins: local modulators of the renin–angiotensin system

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The activity of the renin–angiotensin system crucially depends on the rate of renal renin secretion. Changes in renin secretion result in fluctuations of angiotensin II concentrations in the circulation and subsequently in the activation of angiotensin receptors in all accessible target organs. Consequently, various mechanisms have evolved to regulate the local sensitivity to angiotensin II. In this review, an overview of angiotensin II receptor-associated proteins is addressed. These proteins regulate the local sensitivity of receptor-expressing cells by modulating the receptor surface expression and the receptor sensitivity. A hypothesis will be discussed that integrates the existence of various angiotensin receptor-associated proteins into an overall functional model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. AbdAlla S, Lother H, Quitterer U (2000) AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407:94–98

    Article  PubMed  CAS  Google Scholar 

  2. AbdAlla S, Abdel-Baset A, Lother H, el Massiery A, Quitterer U (2005) Mesangial AT1/B2 receptor heterodimers contribute to angiotensin II hyperresponsiveness in experimental hypertension. J Mol Neurosci 26:185–192

    Article  PubMed  CAS  Google Scholar 

  3. Alam J, Deharo D, Redding KM, Re RN, Cook JL (2009) C-terminal processing of GABARAP is not required for trafficking of the angiotensin II type 1A receptor. Regul Pept 159:78–86

    Article  Google Scholar 

  4. Andresen BT, Shome K, Jackson EK, Romero GG (2005) AT2 receptors cross talk with AT1 receptors through a nitric oxide- and RhoA-dependent mechanism resulting in decreased phospholipase D activity. Am J Physiol Renal Physiol 288:F763–F770

    Article  PubMed  CAS  Google Scholar 

  5. Azuma K, Tamura K, Shigenaga A, Wakui H, Masuda S, Tsurumi-Ikeya Y, Tanaka Y, Sakai M, Matsuda M, Hashimoto T, Ishigami T, Lopez-Ilasaca M, Umemura S (2007) Novel regulatory effect of angiotensin II type 1 receptor-interacting molecule on vascular smooth muscle cells. Hypertension 50:926–932

    Article  PubMed  CAS  Google Scholar 

  6. Becherer KA, Rieder SE, Emr SD, Jones EW (1996) Novel syntaxin homologue, Pep12p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast. Mol Biol Cell 7:579–594

    PubMed  CAS  Google Scholar 

  7. Castrop H, Hocherl K, Kurtz A, Schweda F, Todorov V, Wagner C (2010) Physiology of kidney renin. Physiol Rev 90:607–673

    Article  PubMed  CAS  Google Scholar 

  8. Chappell MC, Iyer SN, Diz DI, Ferrario CM (1998) Antihypertensive effects of angiotensin-(1–7). Braz J Med Biol Res 31:1205–1212

    Article  PubMed  CAS  Google Scholar 

  9. Chappell MC, Gomez MN, Pirro NT, Ferrario CM (2000) Release of angiotensin-(1–7) from the rat hindlimb: influence of angiotensin-converting enzyme inhibition. Hypertension 35:348–352

    Article  PubMed  CAS  Google Scholar 

  10. Cook JL, Re RN, deHaro DL, Abadie JM, Peters M, Alam J (2008) The trafficking protein GABARAP binds to and enhances plasma membrane expression and function of the angiotensin II type 1 receptor. Circ Res 102:1539–1547

    Article  PubMed  CAS  Google Scholar 

  11. Cui T, Nakagami H, Iwai M, Takeda Y, Shiuchi T, Tamura K, Daviet L, Horiuchi M (2000) ATRAP, novel AT1 receptor associated protein, enhances internalization of AT1 receptor and inhibits vascular smooth muscle cell growth. Biochem Biophys Res Commun 279:938–941

    Article  PubMed  CAS  Google Scholar 

  12. Dahms P, Mentlein R (1992) Purification of the main somatostatin-degrading proteases from rat and pig brains, their action on other neuropeptides, and their identification as endopeptidases 24.15 and 24.16. Eur J Biochem 208:145–154

    Article  PubMed  CAS  Google Scholar 

  13. Darsow T, Burd CG, Emr SD (1998) Acidic di-leucine motif essential for AP-3-dependent sorting and restriction of the functional specificity of the Vam3p vacuolar t-SNARE. J Cell Biol 142:913–922

    Article  PubMed  CAS  Google Scholar 

  14. Daviet L, Lehtonen JY, Tamura K, Griese DP, Horiuchi M, Dzau VJ (1999) Cloning and characterization of ATRAP, a novel protein that interacts with the angiotensin II type 1 receptor. J Biol Chem 274:17058–17062

    Article  PubMed  CAS  Google Scholar 

  15. Dejima T, Tamura K, Wakui H, Maeda A, Ohsawa M, Kanaoka T, Haku S, Kengo A, Masuda S, Shigenaga A, Azuma K, Matsuda M, Yabana M, Hirose T, Uchino K, Kimura K, Nagashima Y, Umemura S (2011) Prepubertal angiotensin blockade exerts long-term therapeutic effect through sustained ATRAP activation in salt-sensitive hypertensive rats. J Hypertens 29:1919–1929

    Article  PubMed  CAS  Google Scholar 

  16. Ding Y, Sigmund CD (2001) Androgen-dependent regulation of human angiotensinogen expression in KAP-hAGT transgenic mice. Am J Physiol Renal Physiol 280:F54–F60

    PubMed  CAS  Google Scholar 

  17. Ding Y, Davisson RL, Hardy DO, Zhu LJ, Merrill DC, Catterall JF, Sigmund CD (1997) The kidney androgen-regulated protein promoter confers renal proximal tubule cell-specific and highly androgen-responsive expression on the human angiotensinogen gene in transgenic mice. J Biol Chem 272:28142–28148

    Article  PubMed  CAS  Google Scholar 

  18. Dixit MP, Xu L, Xu H, Bai L, Collins JF, Ghishan FK (2004) Effect of angiotensin-II on renal Na+/H+ exchanger-NHE3 and NHE2. Biochim Biophys Acta 1664:38–44

    Article  PubMed  CAS  Google Scholar 

  19. Doblinger E, Hoecherl K, Mederle K, Kattler V, Walter S, Hansen PB, Jensen BL, Castrop H (2012) Angiotensin AT1 receptor-associated protein Arap1 in the kidney vasculature is suppressed by Angiotensin II. Am J Physiol Renal Physiol. doi:10.1152/ajprenal.00620.2011

  20. du Cheyron D, Chalumeau C, Defontaine N, Klein C, Kellermann O, Paillard M, Poggioli J (2003) Angiotensin II stimulates NHE3 activity by exocytic insertion of the transporter: role of PI 3-kinase. Kidney Int 64:939–949

    Article  PubMed  Google Scholar 

  21. Du G, Huang P, Liang BT, Frohman MA (2004) Phospholipase D2 localizes to the plasma membrane and regulates angiotensin II receptor endocytosis. Mol Biol Cell 15:1024–1030

    Article  PubMed  CAS  Google Scholar 

  22. Ferrario CM, Iyer SN (1998) Angiotensin-(1–7): a bioactive fragment of the renin-angiotensin system. Regul Pept 78:13–18

    Article  PubMed  CAS  Google Scholar 

  23. Fritz RD, Radziwill G (2005) The scaffold protein CNK1 interacts with the angiotensin II type 2 receptor. Biochem Biophys Res Commun 338:1906–1912

    Article  PubMed  CAS  Google Scholar 

  24. Fujita T, Mogi M, Min LJ, Iwanami J, Tsukuda K, Sakata A, Okayama H, Iwai M, Nahmias C, Higaki J, Horiuchi M (2009) Attenuation of cuff-induced neointimal formation by overexpression of angiotensin II type 2 receptor-interacting protein 1. Hypertension 53:688–693

    Article  PubMed  CAS  Google Scholar 

  25. Funke-Kaiser H, Reinemund J, Steckelings UM, Unger T (2010) Adapter proteins and promoter regulation of the angiotensin AT2 receptor—implications for cardiac pathophysiology. J Renin Angiotensin Aldosterone Syst 11:7–17

    Article  PubMed  CAS  Google Scholar 

  26. Gaborik Z, Szaszak M, Szidonya L, Balla B, Paku S, Catt KJ, Clark AJ, Hunyady L (2001) Beta-arrestin- and dynamin-dependent endocytosis of the AT1 angiotensin receptor. Mol Pharmacol 59:239–247

    PubMed  CAS  Google Scholar 

  27. Gelosa P, Pignieri A, Fandriks L, de Gasparo M, Hallberg A, Banfi C, Castiglioni L, Turolo L, Guerrini U, Tremoli E, Sironi L (2009) Stimulation of AT2 receptor exerts beneficial effects in stroke-prone rats: focus on renal damage. J Hypertens 27:2444–2451

    Article  PubMed  CAS  Google Scholar 

  28. Griendling KK, Lassegue B, Alexander RW (1996) Angiotensin receptors and their therapeutic implications. Annu Rev Pharmacol Toxicol 36:281–306

    Article  PubMed  CAS  Google Scholar 

  29. Gunther S, Gimbrone MA Jr, Alexander RW (1980) Regulation by angiotensin II of its receptors in resistance blood vessels. Nature 287:230–232

    Article  PubMed  CAS  Google Scholar 

  30. Guo DF, Chenier I, Tardif V, Orlov SN, Inagami T (2003) Type 1 angiotensin II receptor-associated protein ARAP1 binds and recycles the receptor to the plasma membrane. Biochem Biophys Res Commun 310:1254–1265

    Article  PubMed  CAS  Google Scholar 

  31. Guo DF, Tardif V, Ghelima K, Chan JS, Ingelfinger JR, Chen X, Chenier I (2004) A novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in rat vascular smooth muscle and renal proximal tubular cells. J Biol Chem 279:21109–21120

    Article  PubMed  CAS  Google Scholar 

  32. Guo DF, Chenier I, Lavoie JL, Chan JS, Hamet P, Tremblay J, Chen XM, Wang DH, Inagami T (2006) Development of hypertension and kidney hypertrophy in transgenic mice overexpressing ARAP1 gene in the kidney. Hypertension 48:453–459

    Article  PubMed  CAS  Google Scholar 

  33. Houillier P, Chambrey R, Achard JM, Froissart M, Poggioli J, Paillard M (1996) Signaling pathways in the biphasic effect of angiotensin II on apical Na/H antiport activity in proximal tubule. Kidney Int 50:1496–1505

    Article  PubMed  CAS  Google Scholar 

  34. Hunyady L, Catt KJ, Clark AJ, Gaborik Z (2000) Mechanisms and functions of AT(1) angiotensin receptor internalization. Regul Pept 91:29–44

    Article  PubMed  CAS  Google Scholar 

  35. Kai H, Griendling KK, Lassegue B, Ollerenshaw JD, Runge MS, Alexander RW (1994) Agonist-induced phosphorylation of the vascular type 1 angiotensin II receptor. Hypertension 24:523–527

    Article  PubMed  CAS  Google Scholar 

  36. Kang KH, Park SY, Rho SB, Lee JH (2008) Tissue inhibitor of metalloproteinases-3 interacts with angiotensin II type 2 receptor and additively inhibits angiogenesis. Cardiovasc Res 79:150–160

    Article  PubMed  CAS  Google Scholar 

  37. Kittler JT, McAinsh K, Moss SJ (2002) Mechanisms of GABAA receptor assembly and trafficking: implications for the modulation of inhibitory neurotransmission. Mol Neurobiol 26:251–268

    Article  PubMed  CAS  Google Scholar 

  38. Knowle D, Ahmed S, Pulakat L (2000) Identification of an interaction between the angiotensin II receptor sub-type AT2 and the ErbB3 receptor, a member of the epidermal growth factor receptor family. Regul Pept 87:73–82

    Article  PubMed  CAS  Google Scholar 

  39. Lavoie JL, Lake-Bruse KD, Sigmund CD (2004) Increased blood pressure in transgenic mice expressing both human renin and angiotensinogen in the renal proximal tubule. Am J Physiol Renal Physiol 286:F965–F971

    Article  PubMed  CAS  Google Scholar 

  40. Li JM, Mogi M, Tsukuda K, Tomochika H, Iwanami J, Min LJ, Nahmias C, Iwai M, Horiuchi M (2007) Angiotensin II-induced neural differentiation via angiotensin II type 2 (AT2) receptor-MMS2 cascade involving interaction between AT2 receptor-interacting protein and Src homology 2 domain-containing protein-tyrosine phosphatase 1. Mol Endocrinol 21:499–511

    Article  PubMed  Google Scholar 

  41. Li Z, Wang ZG, Chen X, Chen XD (2007) Inhibitory effect of angiotensin II type 1 receptor-associated protein on vascular smooth muscle cell growth and neointimal formation. Chin Med Sci J 22:22–26

    PubMed  Google Scholar 

  42. Lopez-Ilasaca M, Liu X, Tamura K, Dzau VJ (2003) The angiotensin II type I receptor-associated protein, ATRAP, is a transmembrane protein and a modulator of angiotensin II signaling. Mol Biol Cell 14:5038–5050

    Article  PubMed  CAS  Google Scholar 

  43. Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL, Lefkowitz RJ (2001) Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA 98:2449–2454

    Article  PubMed  CAS  Google Scholar 

  44. Masuda S, Tamura K, Wakui H, Maeda A, Dejima T, Hirose T, Toyoda M, Azuma K, Ohsawa M, Kanaoka T, Yanagi M, Yoshida S, Mitsuhashi H, Matsuda M, Ishigami T, Toya Y, Suzuki D, Nagashima Y, Umemura S (2010) Expression of angiotensin II type 1 receptor-interacting molecule in normal human kidney and IgA nephropathy. Am J Physiol Renal Physiol 299:F720–F731

    Article  PubMed  CAS  Google Scholar 

  45. Matsuda M, Tamura K, Wakui H, Dejima T, Maeda A, Ohsawa M, Kanaoka T, Haku S, Azushima K, Yamasaki H, Saito D, Hirose T, Maeshima Y, Nagashima Y, Umemura S (2011) Involvement of Runx3 in the basal transcriptional activation of the mouse angiotensin II type 1 receptor-associated protein gene. Physiol Genomics 43:884–894

    Article  PubMed  CAS  Google Scholar 

  46. Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292:C82–C97

    Article  PubMed  CAS  Google Scholar 

  47. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, Papadakis K, Voight BF, Scott LJ, Zhang F, Farrall M, Tanaka T, Wallace C, Chambers JC, Khaw KT, Nilsson P, van der Harst P, Polidoro S, Grobbee DE, Onland-Moret NC, Bots ML, Wain LV, Elliott KS, Teumer A, Luan J, Lucas G, Kuusisto J, Burton PR, Hadley D, McArdle WL, Brown M, Dominiczak A, Newhouse SJ, Samani NJ, Webster J, Zeggini E, Beckmann JS, Bergmann S, Lim N, Song K, Vollenweider P, Waeber G, Waterworth DM, Yuan X, Groop L, Orho-Melander M, Allione A, Di Gregorio A, Guarrera S, Panico S, Ricceri F, Romanazzi V, Sacerdote C, Vineis P, Barroso I, Sandhu MS, Luben RN, Crawford GJ, Jousilahti P, Perola M, Boehnke M, Bonnycastle LL, Collins FS, Jackson AU, Mohlke KL, Stringham HM, Valle TT, Willer CJ, Bergman RN, Morken MA, Doring A, Gieger C, Illig T, Meitinger T, Org E, Pfeufer A, Wichmann HE, Kathiresan S, Marrugat J, O'Donnell CJ, Schwartz SM, Siscovick DS, Subirana I, Freimer NB, Hartikainen AL, McCarthy MI, O'Reilly PF, Peltonen L, Pouta A, de Jong PE, Snieder H, van Gilst WH, Clarke R, Goel A, Hamsten A, Peden JF, Seedorf U, Syvanen AC, Tognoni G, Lakatta EG, Sanna S, Scheet P, Schlessinger D, Scuteri A, Dorr M, Ernst F, Felix SB, Homuth G, Lorbeer R, Reffelmann T, Rettig R, Volker U, Galan P, Gut IG, Hercberg S, Lathrop GM, Zelenika D, Deloukas P, Soranzo N, Williams FM, Zhai G, Salomaa V, Laakso M, Elosua R, Forouhi NG, Volzke H, Uiterwaal CS, van der Schouw YT, Numans ME, Matullo G, Navis G, Berglund G, Bingham SA, Kooner JS, Connell JM, Bandinelli S, Ferrucci L, Watkins H, Spector TD, Tuomilehto J, Altshuler D, Strachan DP, Laan M, Meneton P, Wareham NJ, Uda M, Jarvelin MR, Mooser V, Melander O, Loos RJ, Elliott P, Abecasis GR, Caulfield M, Munroe PB (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41:666–676

    Article  PubMed  CAS  Google Scholar 

  48. Nouet S, Amzallag N, Li JM, Louis S, Seitz I, Cui TX, Alleaume AM, Di Benedetto M, Boden C, Masson M, Strosberg AD, Horiuchi M, Couraud PO, Nahmias C (2004) Trans-inactivation of receptor tyrosine kinases by novel angiotensin II AT2 receptor-interacting protein, ATIP. J Biol Chem 279:28989–28997

    Article  PubMed  CAS  Google Scholar 

  49. Oakley RH, Laporte SA, Holt JA, Caron MG, Barak LS (2000) Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 275:17201–17210

    Article  PubMed  CAS  Google Scholar 

  50. Oppermann M, Freedman NJ, Alexander RW, Lefkowitz RJ (1996) Phosphorylation of the type 1A angiotensin II receptor by G protein-coupled receptor kinases and protein kinase C. J Biol Chem 271:13266–13272

    Article  PubMed  CAS  Google Scholar 

  51. Oppermann M, Gess B, Schweda F, Castrop H (2010) Atrap deficiency increases arterial blood pressure and plasma volume. J Am Soc Nephrol 21:468–477

    Article  PubMed  CAS  Google Scholar 

  52. Oshita A, Iwai M, Chen R, Ide A, Okumura M, Fukunaga S, Yoshii T, Mogi M, Higaki J, Horiuchi M (2006) Attenuation of inflammatory vascular remodeling by angiotensin II type 1 receptor-associated protein. Hypertension 48:671–676

    Article  PubMed  CAS  Google Scholar 

  53. Porrello ER, D'Amore A, Curl CL, Allen AM, Harrap SB, Thomas WG, Delbridge LM (2009) Angiotensin II type 2 receptor antagonizes angiotensin II type 1 receptor-mediated cardiomyocyte autophagy. Hypertension 53:1032–1040

    Article  PubMed  CAS  Google Scholar 

  54. Porrello ER, Delbridge LM, Thomas WG (2009) The angiotensin II type 2 (AT2) receptor: an enigmatic seven transmembrane receptor. Front Biosci 14:958–972

    Article  PubMed  CAS  Google Scholar 

  55. Pulakat L, Cooper S, Knowle D, Mandavia C, Bruhl S, Hetrick M, Gavini N (2005) Ligand-dependent complex formation between the Angiotensin II receptor subtype AT2 and Na+/H + exchanger NHE6 in mammalian cells. Peptides 26:863–873

    Article  PubMed  CAS  Google Scholar 

  56. Pulakat L, Rahman S, Gray A, Knowle D, Gavini N (2005) Roles of the intracellular regions of angiotensin II receptor AT2 in mediating reduction of intracellular cGMP levels. Cell Signal 17:395–404

    Article  PubMed  CAS  Google Scholar 

  57. Qian H, Pipolo L, Thomas WG (2001) Association of beta-Arrestin 1 with the type 1A angiotensin II receptor involves phosphorylation of the receptor carboxyl terminus and correlates with receptor internalization. Mol Endocrinol 15:1706–1719

    Article  PubMed  CAS  Google Scholar 

  58. Rodrigues-Ferreira S, Nahmias C (2010) An ATIPical family of angiotensin II AT2 receptor-interacting proteins. Trends Endocrinol Metab 21:684–690

    Article  PubMed  CAS  Google Scholar 

  59. Rodrigues-Ferreira S, Di Tommaso A, Dimitrov A, Cazaubon S, Gruel N, Colasson H, Nicolas A, Chaverot N, Molinie V, Reyal F, Sigal-Zafrani B, Terris B, Delattre O, Radvanyi F, Perez F, Vincent-Salomon A, Nahmias C (2009) 8p22 MTUS1 gene product ATIP3 is a novel anti-mitotic protein underexpressed in invasive breast carcinoma of poor prognosis. PLoS One 4:e7239

    Article  PubMed  Google Scholar 

  60. Senbonmatsu T, Saito T, Landon EJ, Watanabe O, Price E Jr, Roberts RL, Imboden H, Fitzgerald TG, Gaffney FA, Inagami T (2003) A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy. EMBO J 22:6471–6482

    Article  PubMed  CAS  Google Scholar 

  61. Shivakumar BR, Wang Z, Hammond TG, Harris RC (2005) EP24.15 interacts with the angiotensin II type I receptor and bradykinin B2 receptor. Cell Biochem Funct 23:195–204

    Article  PubMed  CAS  Google Scholar 

  62. Siragy HM (2009) The potential role of the angiotensin subtype 2 receptor in cardiovascular protection. Curr Hypertens Rep 11:260–262

    Article  PubMed  CAS  Google Scholar 

  63. Siragy HM (2010) The angiotensin II type 2 receptor and the kidney. J Renin Angiotensin Aldosterone Syst 11:33–36

    Article  PubMed  CAS  Google Scholar 

  64. Tanaka Y, Tamura K, Koide Y, Sakai M, Tsurumi Y, Noda Y, Umemura M, Ishigami T, Uchino K, Kimura K, Horiuchi M, Umemura S (2005) The novel angiotensin II type 1 receptor (AT1R)-associated protein ATRAP downregulates AT1R and ameliorates cardiomyocyte hypertrophy. FEBS Lett 579:1579–1586

    Article  PubMed  CAS  Google Scholar 

  65. Tsurumi Y, Tamura K, Tanaka Y, Koide Y, Sakai M, Yabana M, Noda Y, Hashimoto T, Kihara M, Hirawa N, Toya Y, Kiuchi Y, Iwai M, Horiuchi M, Umemura S (2006) Interacting molecule of AT1 receptor, ATRAP, is colocalized with AT1 receptor in the mouse renal tubules. Kidney Int 69:488–494

    Article  PubMed  CAS  Google Scholar 

  66. Wakui H, Tamura K, Tanaka Y, Matsuda M, Bai Y, Dejima T, Masuda S, Shigenaga A, Maeda A, Mogi M, Ichihara N, Kobayashi Y, Hirawa N, Ishigami T, Toya Y, Yabana M, Horiuchi M, Minamisawa S, Umemura S (2010) Cardiac-specific activation of angiotensin II type 1 receptor-associated protein completely suppresses cardiac hypertrophy in chronic angiotensin II-infused mice. Hypertension 55:1157–1164

    Article  PubMed  CAS  Google Scholar 

  67. Wang W, Huang Y, Zhou Z, Tang R, Zhao W, Zeng L, Xu M, Cheng C, Gu S, Ying K, Xie Y, Mao Y (2002) Identification and characterization of AGTRAP, a human homolog of murine Angiotensin II Receptor-Associated Protein (Agtrap). Int J Biochem Cell Biol 34:93–102

    Article  PubMed  CAS  Google Scholar 

  68. Werbonat Y, Kleutges N, Jakobs KH, van Koppen CJ (2000) Essential role of dynamin in internalization of M2 muscarinic acetylcholine and angiotensin AT1A receptors. J Biol Chem 275:21969–21974

    Article  PubMed  CAS  Google Scholar 

  69. Wruck CJ, Funke-Kaiser H, Pufe T, Kusserow H, Menk M, Schefe JH, Kruse ML, Stoll M, Unger T (2005) Regulation of transport of the angiotensin AT2 receptor by a novel membrane-associated Golgi protein. Arterioscler Thromb Vasc Biol 25:57–64

    PubMed  CAS  Google Scholar 

  70. Xin Y, Yu L, Chen Z, Zheng L, Fu Q, Jiang J, Zhang P, Gong R, Zhao S (2001) Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics 74:408–413

    Article  PubMed  CAS  Google Scholar 

  71. Zuern C, Krenacs L, Starke S, Heimrich J, Palmetshofer A, Holtmann B, Sendtner M, Fischer T, Galle J, Wanner C, Seibold S (2012) Microtubule associated tumor suppressor 1 deficient mice develop spontaneous heart hypertrophy and SLE-like lymphoproliferative disease. Int J Oncol 40:1079–1088

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author’s work was supported by a grant from the Deutsche Forschungsgemeinschaft (SFB699/B7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayo Castrop.

Additional information

This article is published as part of the special issue on the Renin–Angiotensin System.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castrop, H. Angiotensin receptor-associated proteins: local modulators of the renin–angiotensin system. Pflugers Arch - Eur J Physiol 465, 111–119 (2013). https://doi.org/10.1007/s00424-012-1113-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1113-z

Keywords

Navigation