Skip to main content
Log in

Special features of mitochondrial Ca2+ signalling in adrenal glomerulosa cells

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Aldosterone, secreted by adrenal glomerulosa cells, allows the adaptation of the vertebrate organism to a wide range of physiological and pathological stimuli including acute haemodynamic challenges and long-term changes in dietary sodium and potassium intake. Most of the extracellular signals are mediated by cytosolic Ca2+ signal deriving from Ca2+ release, store-operated and/or voltage-gated Ca2+ influx. Mitochondria in glomerulosa cells play a fundamental role in generating and modulating the final biological response. These organelles not only house several enzymes of aldosterone biosynthesis but also—in a Ca2+-dependent manner—provide NADPH for the function of these enzymes. Moreover, mitochondria, constituting a high portion of cytoplasmic volume and displaying a uniquely low-threshold Ca2+ sequestering ability, shape and thus modulate the decoding of the complex cytosolic Ca2+ response. The unusual features of mitochondrial Ca2+ signalling that permit such an integrative function in adrenal glomerulosa cells are hereby described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bartter FC, Barbour BH, Carr AA, Delea CS (1964) On the role of potassium and of the central nervous system in the regulation of aldosterone secretion. In: Baulieu EE, Robel P (eds) Aldosterone. Blackwell, Oxford, pp 221–242

    Google Scholar 

  2. Baughman JM, Perocchi F, Girgis HS et al (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  PubMed  CAS  Google Scholar 

  3. Berridge MJ (1990) Calcium oscillations. J Biol Chem 265:9583–9586

    PubMed  CAS  Google Scholar 

  4. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    Article  PubMed  CAS  Google Scholar 

  5. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  6. Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3− and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754

    Article  PubMed  CAS  Google Scholar 

  7. Boyd JE, Palmore WP, Mulrow PJ (1971) Role of potassium in the control of aldosterone secretion in the rat. Endocrinology 88:556–565

    Article  PubMed  CAS  Google Scholar 

  8. Brandenburger Y, Kennedy ED, Python CP et al (1996) Possible role for mitochondrial calcium in angiotensin II- and potassium-stimulated steroidogenesis in bovine adrenal glomerulosa cells. Endocrinology 137:5544–5551

    Article  PubMed  CAS  Google Scholar 

  9. Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ (2006) Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol 291:C1082–C1088

    Article  PubMed  CAS  Google Scholar 

  10. Camello-Almaraz C, Salido GM, Pariente JA, Camello PJ (2002) Role of mitochondria in Ca2+ oscillations and shape of Ca2+ signals in pancreatic acinar cells. Biochem Pharmacol 63:283–292

    Article  PubMed  CAS  Google Scholar 

  11. Challet C, Maechler P, Wollheim CB, Ruegg UT (2001) Mitochondrial calcium oscillations in C2C12 myotubes. J Biol Chem 276:3791–3797

    Article  PubMed  CAS  Google Scholar 

  12. Collins TJ, Lipp P, Berridge MJ, Bootman MD (2001) Mitochondrial Ca2+ uptake depends on the spatial and temporal profile of cytosolic Ca2+ signals. J Biol Chem 276:26411–26420

    Article  PubMed  CAS  Google Scholar 

  13. Crompton M, Moser R, Ludi H, Carafoli E (1978) The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem 82:25–31

    Article  PubMed  CAS  Google Scholar 

  14. Csordás G, Thomas AP, Hajnóczky G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18:96–108

    Article  PubMed  Google Scholar 

  15. Csordás G, Várnai G et al (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132

    Article  PubMed  Google Scholar 

  16. Czirják G, Enyedi P (2002) TASK-3 dominates the background potassium conductance in rat adrenal glomerulosa cells. Mol Endocrinol 16:621–629

    Article  PubMed  Google Scholar 

  17. Czirják G, Fischer T, Spät A, Lesage F, Enyedi P (2000) TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II. Mol Endocrinol 14:863–874

    Article  PubMed  Google Scholar 

  18. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    Article  PubMed  Google Scholar 

  19. Di Capite J, Ng SW, Parekh AB (2009) Decoding of cytoplasmic Ca2+ oscillations through the spatial signature drives gene expression. Curr Biol 19:853–858

    Article  PubMed  Google Scholar 

  20. Dluhy RG, Axelrod L, Underwood RH, Williams GH (1972) Studies of the control of plasma aldosterone concentration in normal man. II. Effect of dietary potassium and acute potassium infusion. J Clin Invest 51:1950–1957

    Article  PubMed  CAS  Google Scholar 

  21. Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 25:365–451

    Article  PubMed  CAS  Google Scholar 

  22. Dupont G, Combettes L, Bird GS, Putney JW (2011) Calcium oscillations. Cold Spring Harb Perspect Biol 3:pii: a004226

    Article  Google Scholar 

  23. Enyedi P, Szabadkai G, Horváth A, Szilágyi GL, Spät A (1994) Inositol 1,4,5-trisphosphate receptor subtypes in adrenal glomerulosa cells. Endocrinology 134:2354–2359

    Article  PubMed  CAS  Google Scholar 

  24. Foreman MA, Smith J, Publicover SJ (2006) Characterisation of serum-induced intracellular Ca2+ oscillations in primary bone marrow stromal cells. J Cell Physiol 206:664–671

    Article  PubMed  CAS  Google Scholar 

  25. Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658

    Article  PubMed  CAS  Google Scholar 

  26. Fülöp L, Szanda G, Enyedi B, Várnai P, Spät A (2011) The effect of OPA1 on mitochondrial Ca2+ signaling. PLoS One 6:e25199

    Article  PubMed  Google Scholar 

  27. Giacomello M, Drago I, Bortolozzi M et al (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38:280–290

    Article  PubMed  CAS  Google Scholar 

  28. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786

    PubMed  CAS  Google Scholar 

  29. Hajnóczky G, Csordás G, Hunyady L et al (1992) Angiotensin-II inhibits Na+/K+ pump in rat adrenal glomerulosa cells: possible contribution to stimulation of aldosterone production. Endocrinology 130:1637–1644

    Article  PubMed  Google Scholar 

  30. Hajnóczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82:415–424

    Article  PubMed  Google Scholar 

  31. Hajnóczky G, Thomas AP (1997) Minimal requirements for calcium oscillations driven by the IP3 receptor. EMBO J 16:3533–3543

    Article  PubMed  Google Scholar 

  32. Hattori M, Suzuki AZ, Higo T et al (2004) Distinct roles of inositol 1,4,5-trisphosphate receptor types 1 and 3 in Ca2+ signaling. J Biol Chem 279:11967–11975

    Article  PubMed  CAS  Google Scholar 

  33. Iino M (1990) Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate- induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 95:1103–1122

    Article  PubMed  CAS  Google Scholar 

  34. Ishii K, Hirose K, Iino M (2006) Ca2+ shuttling between endoplasmic reticulum and mitochondria underlying Ca2+ oscillations. EMBO Rep 7:390–396

    Article  PubMed  CAS  Google Scholar 

  35. Jiang D, Zhao L, Clapham DE (2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326:144–147

    Article  PubMed  CAS  Google Scholar 

  36. Kaftan EJ, Xu T, Abercrombie RF, Hille B (2000) Mitochondria shape hormonally induced cytoplasmic calcium oscillations and modulate exocytosis. J Biol Chem 275:25465–25470

    Article  PubMed  CAS  Google Scholar 

  37. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    Article  PubMed  CAS  Google Scholar 

  38. Koncz P, Szanda G, Rajki A, Spät A (2006) Reactive oxygen species, Ca2+ signaling and mitochondrial NAD(P)H level in adrenal glomerulosa cells. Cell Calcium 40:347–357

    Article  PubMed  CAS  Google Scholar 

  39. Korzeniowski MK, Szanda G, Balla T, Spät A (2009) Store-operated Ca2+ influx and subplasmalemmal mitochondria. Cell Calcium 46:49–55

    Article  PubMed  CAS  Google Scholar 

  40. Lupo D, Vollmer C, Deckers M et al (2011) Mdm38 is a 14-3-3-like receptor and associates with the protein synthesis machinery at the inner mitochondrial membrane. Traffic 12:1457–1466

    Article  PubMed  CAS  Google Scholar 

  41. Maechler P, Kennedy ED, Wang HY, Wollheim CB (1998) Desensitization of mitochondrial Ca2+ and insulin secretion responses in the beta cell. J Biol Chem 273:20770–20778

    Article  PubMed  CAS  Google Scholar 

  42. Mammucari C, Patron M, Granatiero V, Rizzuto R (2011) Molecules and roles of mitochondrial calcium signaling. Biofactors 37:219–227

    Article  PubMed  CAS  Google Scholar 

  43. Marsault R, Murgia M, Pozzan T, Rizzuto R (1997) Domains of high Ca2+ beneath the plasma membrane of living A7r5 cells. EMBO J 16:1575–1581

    Article  PubMed  CAS  Google Scholar 

  44. McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    PubMed  CAS  Google Scholar 

  45. Meyer T, Stryer L (1988) Molecular model for receptor-stimulated calcium spiking. Proc Natl Acad Sci USA 85:5051–5055

    Article  PubMed  CAS  Google Scholar 

  46. Michels G, Khan IF, Endres-Becker J et al (2009) Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation 119:2435–2443

    Article  PubMed  CAS  Google Scholar 

  47. Montero M, Alonso MT, Carnicero E et al (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2:57–61

    Article  PubMed  CAS  Google Scholar 

  48. Montero M, Lobaton CD, Moreno A, Alvarez J (2002) A novel regulatory mechanism of the mitochondrial Ca2+ uniporter revealed by the p38 mitogen-activated protein kinase inhibitor SB202190. FASEB J 16:1955–1957

    PubMed  CAS  Google Scholar 

  49. Moreau B, Nelson C, Parekh AB (2006) Biphasic regulation of mitochondrial Ca2+ uptake by cytosolic Ca2+ concentration. Curr Biol 16:1672–1677

    Article  PubMed  CAS  Google Scholar 

  50. Moreau B, Parekh AB (2008) Ca2+-dependent inactivation of the mitochondria Ca2+ uniporter involves proton flux through the ATP synthase. Curr Biol 18:855–859

    Article  PubMed  CAS  Google Scholar 

  51. Nakazaki M, Ishihara H, Kakei M et al (1998) Repetitive mitochondrial Ca2+ signals synchronize with cytosolic Ca2+ oscillations in the pancreatic beta-cell line, MIN6. Diabetologia 41:279–286

    Article  PubMed  CAS  Google Scholar 

  52. Nowikovsky K, Froschauer EM, Zsurka G et al (2004) The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf-Hirschhorn syndrome. J Biol Chem 279:30307–30315

    Article  PubMed  CAS  Google Scholar 

  53. Nussdorfer GG (1980) Cytophysiology of the adrenal zona glomerulosa. Int Rev Cytol 64:307–368

    Article  PubMed  CAS  Google Scholar 

  54. Parekh AB (2008) Ca2+ microdomains near plasma membrane Ca2+ channels: impact on cell function. J Physiol 586:3043–3054

    Article  PubMed  CAS  Google Scholar 

  55. Perocchi F, Gohil VM, Girgis HS et al (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467:291–296

    Article  PubMed  CAS  Google Scholar 

  56. Petersen OH, Wakui M (1990) Oscillating intracellular Ca2+ signals evoked by activation of receptors linked to inositol lipid hydrolysis: mechanism of generation. J Membr Biol 118:93–105

    Article  PubMed  CAS  Google Scholar 

  57. Pinton P, Leo S, Wieckowski MR, Di Benedetto G, Rizzuto R (2004) Long-term modulation of mitochondrial Ca2+ signals by protein kinase C isozymes. J Cell Biol 165:223–232

    Article  PubMed  CAS  Google Scholar 

  58. Pitter JG, Maechler P, Wollheim CB, Spät A (2002) Mitochondria respond to Ca2+ already in the submicromolar range: correlation with redox state. Cell Calcium 31:97–104

    Article  PubMed  CAS  Google Scholar 

  59. Pralong WF, Hunyady L, Várnai P, Wollheim CB, Spät A (1992) Pyridine nucleotide redox state parallels production of aldosterone in potassium-stimulated adrenal glomerulosa cells. Proc Natl Acad Sci USA 89:132–136

    Article  PubMed  CAS  Google Scholar 

  60. Pralong WF, Spät A, Wollheim CB (1994) Dynamic pacing of cell metabolism by intracellular Ca2+. J Biol Chem 269:27310–27314

    PubMed  CAS  Google Scholar 

  61. Quinn SJ, Cornwall MC, Williams GH (1987) Electrical properties of isolated rat adrenal glomerulosa and fasciculata cells. Endocrinology 120:903–914

    Article  PubMed  CAS  Google Scholar 

  62. Rizzuto R, Pinton P, Carrington W et al (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    Article  PubMed  CAS  Google Scholar 

  63. Robb-Gaspers LD, Burnett P, Rutter GA, Denton RM, Rizzuto R, Thomas AP (1998) Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J 17:4987–5000

    Article  PubMed  CAS  Google Scholar 

  64. Rohács T, Bagó A, Deák F, Hunyady L, Spät A (1994) Capacitative Ca2+ influx in adrenal glomerulosa cells. Possible role in angiotensin II response. Am J Physiol Cell Physiol 267:C1246–C1252

    Google Scholar 

  65. Rohács T, Nagy G, Spät A (1997) Cytoplasmic Ca2+ signalling and reduction of mitochondrial pyridine nucleotides in adrenal glomerulosa cells in response to K+, angiotensin II and vasopressin. Biochem J 322:785–792

    PubMed  Google Scholar 

  66. Rohács T, Tory K, Dobos A, Spät A (1997) Intracellular calcium release is more efficient than calcium influx in stimulating mitochondrial NAD(P)H formation in adrenal glomerulosa cells. Biochem J 328:525–528

    PubMed  Google Scholar 

  67. Rydstrom J, da Cruz AT, Ernster L (1970) Factors governing the kinetics and steady state of the mitochondrial nicotinamide nucleotide transhydrogenase system. Eur J Biochem 17:56–62

    Article  PubMed  CAS  Google Scholar 

  68. Spät A, Bradford PG, McKinney JS, Rubin RP, Putney JW Jr (1986) A saturable receptor for 32P-inositol-1,4,5-triphosphate in hepatocytes and neutrophils. Nature 319:514–516

    Article  PubMed  Google Scholar 

  69. Spät A, Fabiato A, Rubin RP (1986) Binding of inositol trisphosphate by a liver microsomal fraction. Biochem J 233:929–932

    PubMed  Google Scholar 

  70. Spät A, Fülöp L, Koncz P, Szanda G (2008) When is high-Ca2+ microdomain required for mitochondrial Ca2+ uptake? Acta Physiol (Oxf) 195:139–147

    Article  Google Scholar 

  71. Spät A, Fülöp L, Szanda G (2012) The role of mitochondrial Ca2+ and NAD(P)H in the control of aldosterone secretion. Cell Calcium. doi:10.1016/j.ceca.2012.01.009

  72. Spät A, Hunyady L (2004) Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 84:489–539

    Article  PubMed  Google Scholar 

  73. Spät A, Pitter JG (2004) The effect of cytoplasmic Ca2+ signal on the redox state of mitochondrial pyridine nucleotides. Molec cell Endocrin 215:115–118

    Article  Google Scholar 

  74. Spät A, Szanda G, Csordás G, Hajnóczky G (2008) High- and low-calcium-dependent mechanisms of mitochondrial calcium signalling. Cell Calcium 44:51–63

    Article  PubMed  Google Scholar 

  75. Straub SV, Giovannucci DR, Yule DI (2000) Calcium wave propagation in pancreatic acinar cells: functional interaction of inositol 1,4,5-trisphosphate receptors, ryanodine receptors, and mitochondria. J Gen Physiol 116:547–559

    Article  PubMed  CAS  Google Scholar 

  76. Szanda G, Koncz P, Várnai P, Spät A (2006) Mitochondrial Ca2+ uptake with and without the formation of high-Ca2+ microdomains. Cell Calcium 40:527–538

    Article  PubMed  CAS  Google Scholar 

  77. Szanda G, Rajki A, Gallego-Sandin S, Garcia-Sancho J, Spät A (2009) Effect of cytosolic Mg2+ on mitochondrial Ca2+ signaling. Pflügers Archiv European J Physiol 457:941–954

    Article  CAS  Google Scholar 

  78. Taylor CW, Laude AJ (2002) IP3 receptors and their regulation by calmodulin and cytosolic Ca2+. Cell Calcium 32:321–334

    Article  PubMed  CAS  Google Scholar 

  79. Taylor CW, Rahman T, Tovey SC, Dedos SG, Taylor EJ, Velamakanni S (2009) IP3 receptors: some lessons from DT40 cells. Immunol Rev 231:23–44

    Article  PubMed  CAS  Google Scholar 

  80. Várnai P, Petheö GL, Makara JK, Spät A (1998) Electrophysiological study on the high K+ sensitivity of rat glomerulosa cells. Pflügers Archiv European J Physiol 435:429–431

    Article  Google Scholar 

  81. Vinson GP, Whitehouse B, Hinson J (1992) The adrenal cortex. Prentice Hall, Englewood Cliffs, pp 65–139, 07632

    Google Scholar 

  82. Waldeck-Weiermair M, Jean-Quartier C, Rost R et al (2011) Leucine zipper EF hand-containing transmembrane protein 1 (Letm1) and uncoupling proteins 2 and 3 (UCP2/3) contribute to two distinct mitochondrial Ca2+ uptake pathways. J Biol Chem 286:28444–28455

    Article  PubMed  CAS  Google Scholar 

  83. Walsh C, Barrow S, Voronina S, Chvanov M, Petersen OH, Tepikin A (2009) Modulation of calcium signalling by mitochondria. Biochim Biophys Acta 1787:1374–1382

    Article  PubMed  CAS  Google Scholar 

  84. Wiederkehr A, Szanda G, Akhmedov D et al (2011) Mitochondrial matrix calcium is an activating signal for hormone secretion. Cell Metab 13:601–611

    Article  PubMed  CAS  Google Scholar 

  85. Zhang S, Fritz N, Ibarra C, Uhlen P (2011) Inositol 1,4,5-trisphosphate receptor subtype-specific regulation of calcium oscillations. Neurochem Res 36:1175–1185

    Article  PubMed  CAS  Google Scholar 

  86. Zhou YD, Fang XF, Cui ZJ (2009) UVA-induced calcium oscillations in rat mast cells. Cell Calcium 45:18–28

    Article  PubMed  CAS  Google Scholar 

  87. Zimmermann B, Walz B (1999) The mechanism mediating regenerative intercellular Ca2+ waves in the blowfly salivary gland. EMBO J 18:3222–3231

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Hungarian Scientific Research Fund (OTKA TS-049851, TS-040865 and NK-72661) and the Council for Medical Research (ETT 0007/2006 and 008–09).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Spät.

Additional information

This article is published as part of the Special Issue on Cell-specific roles of mitochondrial Ca2+ handling

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spät, A., Szanda, G. Special features of mitochondrial Ca2+ signalling in adrenal glomerulosa cells. Pflugers Arch - Eur J Physiol 464, 43–50 (2012). https://doi.org/10.1007/s00424-012-1086-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1086-y

Keywords

Navigation