Skip to main content

Advertisement

Log in

Physiology of potassium channels in the inner membrane of mitochondria

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The inner membrane of the ATP-producing organelles of endosymbiotic origin, mitochondria, has long been considered to be poorly permeable to cations and anions, since the strict control of inner mitochondrial membrane permeability is crucial for efficient ATP synthesis. Over the past 30 years, however, it has become clear that various ion channels—along with antiporters and uniporters—are present in the mitochondrial inner membrane, although at rather low abundance. These channels are important for energy supply, and some are a decisive factor in determining whether a cell lives or dies. Their electrophysiological and pharmacological characterisations have contributed importantly to the ongoing elucidation of their pathophysiological roles. This review gives an overview of recent advances in our understanding of the functions of the mitochondrial potassium channels identified so far. Open issues concerning the possible molecular entities giving rise to the observed activities and channel protein targeting to mitochondria are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aggarwal NT, Pravdic D, McNally EM, Bosnjak ZJ, Shi NQ, Makielski JC (2010) The mitochondrial bioenergetic phenotype for protection from cardiac ischemia in SUR2 mutant mice. Am J Physiol Heart Circ Physiol 299:H1884–H1890

    Article  PubMed  CAS  Google Scholar 

  2. Alberici LC, Oliveira HC, Patrício PR, Kowaltowski AJ, Vercesi AE (2006) Hyperlipidemic mice present enhanced catabolism and higher mitochondrial ATP-sensitive K+ channel activity. Gastroenterology 131:1228–1234

    Article  PubMed  CAS  Google Scholar 

  3. Aldakkak M, Stowe DF, Cheng Q, Kwok WM, Camara AKS (2010) Mitochondrial matrix K+ flux independent of large-conductance Ca2+-activated K+ channel opening. Am J Physiol Cell Physiol 298:C530–C541

    Article  PubMed  CAS  Google Scholar 

  4. Amiry-Moghaddam M, Lindland H, Zelenin S, Roberg BA, Gundersen BB, Petersen P, Rinvik E, Torgner IA, Ottersen OP (2005) Brain mitochondria contain aquaporin water channels: evidence for the expression of a short AQP9 isoform in the inner mitochondrial membrane. FASEB J 19:1459–1467

    Article  PubMed  CAS  Google Scholar 

  5. Anandatheerthavarada HK, Biswas G, Mullick J, Sepuri NB, Otvos L, Pain D, Avadhani NG (1999) Dual targeting of cytochrome P4502B1 to endoplasmic reticulum and mitochondria involves a novel signal activation by cyclic AMP-dependent phosphorylation at ser128. EMBO J 18:5494–5504

    Article  PubMed  CAS  Google Scholar 

  6. Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol 291:H2067–H2074

    Article  PubMed  CAS  Google Scholar 

  7. Annis MG, Soucie EL, Dlugosz PJ, Cruz-Aguado JA, Penn LZ, Leber B, Andrews DW (2005) Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J 24:096–2103

    Article  CAS  Google Scholar 

  8. Aon MA, Cortassa S, Wei AC, Grunnet M, O’Rourke B (2010) Energetic performance is improved by specific activation of K+ fluxes through KCa channels in heart mitochondria. Biochim Biophys Acta 1797:71–80

    PubMed  CAS  Google Scholar 

  9. Ardehali H (2005) Cytoprotective channels in mitochondria. J Bioenerg Biomembr 37:171–177

    Article  PubMed  CAS  Google Scholar 

  10. Ardehali H, Chen Z, Ko Y, Mejía-Alvarez R, Marbán E (2004) Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ potassium channel activity. Proc Natl Acad Sci USA 101:11880–11885

    Article  PubMed  CAS  Google Scholar 

  11. Ardehali H, O’Rourke B (2005) Mitochondrial K(ATP) channels in cell survival and death. J Mol Cell Cardiol 39:7–16

    Article  PubMed  CAS  Google Scholar 

  12. Baines CP (2009) The mitochondrial permeability transition pore and ischemia–reperfusion injury. Basic Res Cardiol 104:181–188

    Article  PubMed  CAS  Google Scholar 

  13. Baines CP, Molkentin JD (2005) STRESS signaling pathways that modulate cardiac myocyte apoptosis. J Mol Cell Cardiol 38:47–62

    Article  PubMed  CAS  Google Scholar 

  14. Balss J, Papatheodorou P, Mehmel M, Baumesiter D, Hertel B, Delaroque N, Chatelain FC, Minor DL, Van Etten JL, Rassow J, Moroni A, Thiel G (2008) Transmembrane domain length of viral K+ channels is a signal for mitochondria targeting. Proc Natl Acad Sci USA 105:12313–12318

    Article  PubMed  CAS  Google Scholar 

  15. Báthori G, Csordás G, Garcia-Perez C, Davies E, Hajnóczky G (2006) Ca2+-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion-selective channel (VDAC). J Biol Chem 281:17347–17358

    Article  PubMed  CAS  Google Scholar 

  16. Báthori G, Szabó I, Schmehl I, Tombola F, Messina A, De Pinto V, Zoratti M (1998) Novel aspects of the electrophysiology of mitochondrial porin. Biochem Biophys Res Commun 243:258–263

    Article  PubMed  Google Scholar 

  17. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  PubMed  CAS  Google Scholar 

  18. Bednarczyk P (2009) Potassium channels in brain mitochondria. Acta Biochim Pol 56:385–392

    PubMed  CAS  Google Scholar 

  19. Bednarczyk P, Barker GD, Halestrap AP (2008) Determination of the rate of K(+) movement through potassium channels in isolated rat heart and liver mitochondria. Biochim Biophys Acta 1777:540–548

    Article  PubMed  CAS  Google Scholar 

  20. Bednarczyk P, Dołowy K, Szewczyk A (2008) New properties of mitochondrial ATP-regulated potassium channels. J Bioenerg Biomembr 40:325–335

    Article  PubMed  CAS  Google Scholar 

  21. Bednarczyk P, Kicińska A, Kominkova V, Ondrias K, Dolowy K, Szewczyk A (2004) Quinine inhibits mitochondrial ATP-regulated potassium channel from bovine heart. J Membr Biol 199:63–72

    Article  PubMed  CAS  Google Scholar 

  22. Bednarczyk P, Kowalczyk JE, Beresewicz M, Dołowy K, Szewczyk A, Zabłocka B (2010) Identification of a voltage-gated potassium channel in gerbil hippocampal mitochondria. Biochem Biophys Res Commun 397:614–620

    Article  PubMed  CAS  Google Scholar 

  23. Bentzen BH, Osadchii O, Jespersen T, Schultz Hansen R, Olesen SP, Grunnet M (2009) Activation of big conductance Ca2+-activated K+ channels (BK) protects the heart against ischemia–reperfusion injury. Pflugers Arch - Eur J Physiol 457:979–988

    Article  CAS  Google Scholar 

  24. Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155

    PubMed  CAS  Google Scholar 

  25. Biasutto L, Szabo’ I, Zoratti M. (2011) Mitochondrial effects of plant-made compounds. Antioxid Redox Signal 15:3039–3059

    Google Scholar 

  26. Boengler K, Heusch G, Schulz R (2011) Mitochondria in postconditioning. Antioxid Redox Signal 14:863–880

    Article  PubMed  CAS  Google Scholar 

  27. Borchert GH, Yang C, Kolár F (2011) Mitochondrial BKCa channels contribute to protection of cardiomyocytes isolated from chronically hypoxic rats. Am J Physiol Heart Circ Physiol 300:H507–H513

    Article  PubMed  CAS  Google Scholar 

  28. Boveris A, Cadenas E, Stoppani AO (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156:435–444

    PubMed  CAS  Google Scholar 

  29. Cadenas E, Boveris A, Ragan CI, Stoppani AO (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinolcytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 180:248–257

    Article  PubMed  CAS  Google Scholar 

  30. Cahalan MD, Chandy KG (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231:59–87

    Article  PubMed  CAS  Google Scholar 

  31. Calamita G, Ferri D, Gena P, Liquori GE, Cavalier A, Thomas D, Svelto M (2005) The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water. J Biol Chem 280:17149–17153

    Article  PubMed  CAS  Google Scholar 

  32. Calderone V, Testai L, Martelli A, Rapposelli S, Digiacomo M, Balsamo A, Breschi MC (2010) Anti-ischemic properties of a new spiro-cyclic benzopyran activator of the cardiac mito-KATP channel. Biochem Pharm 79:39–47

    Article  PubMed  CAS  Google Scholar 

  33. Cao C, Healey S, Amaral A, Lee-Couture A, Wan S, Kouttab N, Chu W, Wan Y (2007) ATP-sensitive potassium channel: a novel target for protection against UV-induced human skin cell damage. J Cell Physiol 212:252–263

    Article  PubMed  CAS  Google Scholar 

  34. Cardoso AR, Queliconi BB, Kowaltowski AJ (2010) Mitochondrial ion transport pathways: role in metabolic diseases. Biochim Biophys Acta 1797:832–838

    Article  PubMed  CAS  Google Scholar 

  35. Carroll R, Gant VA, Yellon DM (2001) Mitochondrial K(ATP) channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation. Cardiovasc Res 51:691–700

    Article  PubMed  CAS  Google Scholar 

  36. Cheng Y, Gu XQ, Bednarczyk P, Wiedemann FR, Haddad GG, Siemen D (2008) Hypoxia increases activity of the BK-channel in the inner mitochondrial membrane and reduces activity of the permeability transition pore. Cell Physiol Biochem 22:127–136

    Article  PubMed  CAS  Google Scholar 

  37. Cheng Y, Gulbins E, Siemen D (2011) Activation of the permeability transition pore by Bax via inhibition of the mitochondrial BK channel. Cell Physiol Biochem 27:191–200

    Article  PubMed  CAS  Google Scholar 

  38. Chiandussi E, Petrussa E, Macrì F, Vianello A (2002) Modulation of a plant mitochondrial K+ ATP channel and its involvement in cytochrome c release. J Bioenerg Biomembr 34:177–184

    Article  PubMed  CAS  Google Scholar 

  39. Choma K, Bednarczyk P, Koszela-Piotrowska I, Kulawiak B, Kudin A, Kunz WS, Dołowy K, Szewczyk A (2009) Single channel studies of the ATP-regulated potassium channel in brain mitochondria. J Bioenerg Biomembr 41:323–334

    Article  PubMed  CAS  Google Scholar 

  40. Costa ADT, Garlid KD (2008) Intramitochondrial signaling: interactions among mitoKATP, PKC ε, ROS, and MPT. Am J Physiol Heart Circ Physiol 295:H874–H882

    Article  PubMed  CAS  Google Scholar 

  41. Costa ADT, Garlid KD (2009) MitoKATP activity in healthy and ischemic hearts. J Bioenerg Biomembr 41:123–126

    Article  PubMed  CAS  Google Scholar 

  42. Costa ADT, Kriegera MA (2009) Evidence for an ATP-sensitive K+ channel in mitoplasts isolated from Trypanosoma cruzi and Crithidia fasciculate. Int J Parasitol 39:955–961

    Article  PubMed  CAS  Google Scholar 

  43. Costantini P, Chernyak BV, Petronilli V, Bernardi P (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271:6746–6751

    Article  PubMed  CAS  Google Scholar 

  44. Dahlem YA, Horn TF, Buntinas L, Gonoi T, Wolf G, Siemen D (2004) The human mitochondrial KATP channel is modulated by calcium and nitric oxide: a patch-clamp approach. Biochim Biophys Acta 1656:46–56

    Article  PubMed  CAS  Google Scholar 

  45. De Marchi U, Checchetto V, Zanetti M, Teardo E, Soccio M, Formentin E, Giacometti GM, Pastore D, Zoratti M, Szabò I (2010) ATP-sensitive cation-channel in wheat (Triticum durum Desf.): identification and characterization of a plant mitochondrial channel by patch-clamp. Cell Physiol Biochem 26(6):975–982, Epub 2011 Jan 4

    Article  PubMed  CAS  Google Scholar 

  46. De Marchi U, Sassi N, Fioretti B, Catacuzzeno L, Cereghetti GM, Szabò I, Zoratti M (2009) Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. Cell Calcium 45:509–516

    Article  PubMed  CAS  Google Scholar 

  47. De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    Article  PubMed  CAS  Google Scholar 

  48. Di Lisa F, Canton M, Menabò R, Kaludercic N, Bernardi P (2007) Mitochondria and cardioprotection. Heart Fail Rev 12:249–260

    Article  PubMed  CAS  Google Scholar 

  49. Dos Santos P, Kowaltowski AJ, Laclau MN, Seetharaman S, Paucek P, Boudina S, Thambo JB, Tariosse L, Garlid KD (2002) Mechanisms by which opening the mitochondrial ATP- sensitive K+ channel protects the ischemic heart. Am J Physiol Heart Circ Physiol 283:H284–H295

    PubMed  Google Scholar 

  50. Douglas RM, Lai JC, Bian S, Cummins L, Moczydlowski E, Haddad GG (2006) The calcium-sensitive large-conductance potassium channel (BK/MAXI K) is present in the inner mitochondrial membrane of rat brain. Neuroscience 139:1249–1261

    Article  PubMed  CAS  Google Scholar 

  51. Dröse S, Hanley PJ, Brandt U (2009) Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III. Biochim Biophys Acta 1790:558–565

    Article  PubMed  CAS  Google Scholar 

  52. Facundo HT, de Paula JG, Kowaltowski AJ (2005) Mitochondrial ATP-sensitive K+ channels prevent oxidative stress, permeability transition and cell death. J Bioenerg Biomembr 37:5–82

    Article  CAS  Google Scholar 

  53. Facundo HTF, de Paula JG, Kowaltowski AJ (2007) Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production. Free Radic Biol Med 42:1039–1048

    Article  PubMed  CAS  Google Scholar 

  54. Facundo HTF, Fornazari M, Kowaltowski AJ (2006) Tissue protection mediated by mitochondrial K+ channels. Biochim Biophys Acta 1762:202–212

    PubMed  CAS  Google Scholar 

  55. Fahanik-Babaei J, Eliassi A, Jafari A, Sauve R, Salari S, Saghiri R (2011) Electro-pharmacological profile of a mitochondrial inner membrane big-potassium channel from rat brain. Biochim Biophys Acta 1808:454–460

    Article  PubMed  CAS  Google Scholar 

  56. Ferranti R, da Silva MM, Kowaltowski AJ (2003) Mitochondrial ATPsensitive K+ channel opening decreases reactive oxygen species generation. FEBS Lett 536:51–55

    Article  PubMed  CAS  Google Scholar 

  57. Fieni F, Parkar A, Misgeld T, Kerschensteiner M, Lichtman JW, Pasinelli P, Trotti D (2010) Voltage-dependent inwardly rectifying potassium conductance in the outer membrane of neuronal mitochondria. J Biol Chem 285:27411–27417

    Article  PubMed  CAS  Google Scholar 

  58. Fornazari M, de Paula JG, Castilho RF, Kowaltowski AJ (2008) Redox properties of the adenoside triphosphate-sensitive K+ channel in brain mitochondria. J Neurosci Res 86:1548–1556

    Article  PubMed  CAS  Google Scholar 

  59. Foster DB, O’Rourke B, Van Eyk JE (2008) What can mitochondrial proteomics tell us about cardioprotection afforded by preconditioning? Expert Rev Proteomics 5:633–636

    Article  PubMed  Google Scholar 

  60. García-Pérez C, Schneider TG, Hajnoczky G, Csordás G. (2011) Alignment of sarcoplasmic reticulum–mitochondrial junctions with mitochondrial contact points. Am J Physiol Heart Circ Physiol 301:H1907–H1915

    Google Scholar 

  61. Garg V, Hu K (2007) Protein kinase C isoform-dependent modulation of ATP-sensitive K+ channels in mitochondrial inner membrane. Am J Physiol Heart Circ Physiol 293:H322–H332

    Article  PubMed  CAS  Google Scholar 

  62. Garlid KD (1996) Cation transport in mitochondria—the potassium cycle. Biochim Biophys Acta 1275:123–126

    Article  PubMed  Google Scholar 

  63. Garlid KD, Beavis AD (1985) Swelling and contraction of the mitochondrial matrix. II. Quantitative application of the light scattering technique to solute transport across the inner membrane. J Biol Chem 260:13434–13441

    PubMed  CAS  Google Scholar 

  64. Garlid KD, Costa AD, Quinlan CL, Pierre SV, Dos Santos P (2009) Cardioprotective signaling to mitochondria. J Mol Cell Cardiol 46:858–866

    Article  PubMed  CAS  Google Scholar 

  65. Garlid KD, Dos Santos P, Xie ZJ, Costa AD, Paucek P (2003) Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K+ channel in cardiac function and cardioprotection. Biochim Biophys Acta 1606:1–21

    Article  PubMed  CAS  Google Scholar 

  66. Garlid KD, Paucek P (2003) Mitochondrial potassium transport: the K+ cycle. Biochim Biophys Acta 1606:23–41

    Article  PubMed  CAS  Google Scholar 

  67. Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D’Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81:1072–1082

    PubMed  CAS  Google Scholar 

  68. Gazula VR, Strumbos JG, Mei X, Chen H, Rahner C, Kaczmarek LK (2010) Localization of Kv1.3 channels in presynaptic terminals of brainstem auditory neurons. J Comp Neurol 518:3205–3220

    Article  PubMed  CAS  Google Scholar 

  69. Giorgi C, De Stefani D, Bononi A, Rizzuto R, Pinton P (2009) Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int J Biochem Cell Biol 41:1817–1827

    Article  PubMed  CAS  Google Scholar 

  70. Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221–233

    Article  PubMed  CAS  Google Scholar 

  71. Grigoriev SM, Skarga YY, Mironova GD, Marinov BS (1999) Regulation of mitochondrial KATP channel by redox agents. Biochim Biophys Acta 1410:91–96

    Article  PubMed  CAS  Google Scholar 

  72. Grover GJ, D’Alonzo AJ, Garlid KD, Bajgar R, Lodge NJ, Sleph PG, Darbenzio RB, Hess TA, Smith MA, Paucek P, Atwal KS (2001) Pharmacologic characterization of BMS-191095, a mitochondrial K(ATP) opener with no peripheral vasodilator or cardiac action potential shortening activity. J Pharmacol Exp Ther 297:1184–1192

    PubMed  CAS  Google Scholar 

  73. Grover GJ, McCullough JR, Henry DE, Conder ML, Sleph PG (1989) Anti-ischemic effects of the potassium channel activators pinacidil and cromakalim and the reversal of these effects with the potassium channel blocker glyburide. J Pharmacol Exp Ther 251:98–104

    PubMed  CAS  Google Scholar 

  74. Gu XQ, Siemen D, Parvez S, Cheng Y, Xue J, Zhou D, Sun X, Jonas EA, Haddad GG (2007) Hypoxia increases BK channel activity in the inner mitochondrial membrane. Biochem Biophys Res Commun 358:311–316

    Article  PubMed  CAS  Google Scholar 

  75. Guda C, Guda P, Fahy E, Subramaniam S (2004) MITOPRED: a web server for the prediction of mitochondrial proteins. Nucleic Acids Res 2004:W372–W374

    Article  CAS  Google Scholar 

  76. Guillet V, Gueguen N, Cartoni R, Chevrollier A, Desquiret V, Angebault C, Amati-Bonneau P, Procaccio V, Bonneau D, Martinou JC, Reynier P (2011) Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin2 mutation. FASEB J 25:1618–1627

    Article  PubMed  CAS  Google Scholar 

  77. Gulbins E, Sassi N, Grassmè H, Zoratti M, Szabò I (2010) Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochim Biophys Acta Bioenergetics 1797:1251–1259

    Article  CAS  Google Scholar 

  78. Halestrap AP, Clarke SJ, Khaliulin I (2007) The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta 1767:1007–1031

    Article  PubMed  CAS  Google Scholar 

  79. Halestrap AP, Pasdois P (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta 1787:1402–1415

    Article  PubMed  CAS  Google Scholar 

  80. Hanley PJ, Mickel M, Löffler M, Brandt U, Daut J (2002) K(ATP) channel-independent targets of diazoxide and 5- hydroxydecanoate in the heart. J Physiol 542:735–741

    Article  PubMed  CAS  Google Scholar 

  81. Hansson MJ, Morota S, Teilum M, Mattiasson G, Uchino H, Elmér E (2010) Increased potassium conductance of brain mitochondria induces resistance to permeability transition by enhancing matrix volume. J Biol Chem 285:741–750

    Article  PubMed  CAS  Google Scholar 

  82. Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia/reperfusion injury: targeting the reperfusion injury salvage kinase (RISK) pathway. Cardiovasc Res 61:448–460

    Article  PubMed  CAS  Google Scholar 

  83. Hausenloy DJ, Yellon DM (2007) Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev 12:217–234

    Article  PubMed  CAS  Google Scholar 

  84. Hausenloy DJ, Yellon DM (2011) The therapeutic potential of ischemic conditioning: an update. Nat Rev Cardiol. doi:10.1038/nrcardio.2011.85 [Epub ahead of print]

  85. Heinen A, Aldakkak M, Stowe DF, Rhodes SS, Riess ML, Varadarajan SG, Camara AK (2007) Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels. Am J Physiol Heart Circ Physiol 293:H1400–H1407

    Article  PubMed  CAS  Google Scholar 

  86. Heinen A, Camara AK, Aldakkak M, Rhodes SS, Riess ML, Stowe DF (2007) Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential. Am J Physiol Cell Physiol 292:C148–C156

    Article  PubMed  CAS  Google Scholar 

  87. Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, García-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586

    Article  PubMed  CAS  Google Scholar 

  88. Hille B (1973) Potassium channels in myelinated nerve. Selective permeability to small cations. J Gen Physiol 61:669–686

    Article  PubMed  CAS  Google Scholar 

  89. Holmuhamedov EL, Jahangir A, Oberlin A, Komarov A, Colombini M, Terzic A (2004) Potassium channel openers are uncoupling protonophores: implication in cardioprotection. FEBS Lett 568:167–170

    Article  PubMed  CAS  Google Scholar 

  90. Holmuhamedov E, Lewis L, Bienengraeber M, Holmuhamedova M, Jahangir A, Terzic A (2002) Suppression of human tumor cell proliferation through mitochondrial targeting. FASEB J 16:1010–1016

    Article  PubMed  CAS  Google Scholar 

  91. Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352:244–247

    Article  PubMed  CAS  Google Scholar 

  92. Ivanes F, Rioufol G, Piot C, Ovize M (2011) Postconditioning in acute myocardial infarction patients. Antioxid Redox Signal 14:811–820

    Article  PubMed  CAS  Google Scholar 

  93. Jabůrek M, Costa AD, Burton JR, Costa CL, Garlid KD (2006) Mitochondrial PKC epsilon and mitochondrial ATP-sensitive K+ channel copurify and coreconstitute to form a functioning signaling module in proteoliposomes. Circ Res 99:878–883

    Article  PubMed  CAS  Google Scholar 

  94. Jabůrek M, Yarov-Yarovoy V, Paucek P, Garlid KD (1998) State-dependent inhibition of the mitochondrial KATP channel by glyburide and 5-hydroxydecanoate. J Biol Chem 273:13578–13582

    PubMed  Google Scholar 

  95. Jarmuszkiewicz W, Matkovic K, Koszela-Piotrowska I (2010) Potassium channels in the mitochondria of unicellular eukaryotes and plants. FEBS Lett 584:2057–2062

    Article  PubMed  CAS  Google Scholar 

  96. Juhaszova M, Zorov DB, Kim S-H, Pepe S, Fu Q, Fishbein KW et al (2004) Glycogen synthase kinase-3ß mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549

    PubMed  CAS  Google Scholar 

  97. Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res 104:1240–1252

    Article  PubMed  CAS  Google Scholar 

  98. Kaasik A, Safiulina D, Zharkovsky A, Veksler V (2007) Regulation of mitochondrial matrix volume. Am J Physiol Cell Physiol 292:C157–C163

    Article  PubMed  CAS  Google Scholar 

  99. Kang SH, Park WS, Kim N, Youm JB, Warda M, Ko JH, Ko EA, Han J (2007) Mitochondrial Ca2+-activated K+ channels more efficiently reduce mitochondrial Ca2+ overload in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 293:H307–H313

    Article  PubMed  CAS  Google Scholar 

  100. Karniely S, Pines O (2005) Single translation-dual destination. EMBO Reports 6:420–425

    Article  PubMed  CAS  Google Scholar 

  101. Kathiresan T, Harvey M, Orchard S, Sakai Y, Sokolowski B (2009) A protein interaction network for the large conductance Ca2+-activated K+ channel in the mouse cochlea. Molecular & Cellular Proteomics 8(8):1972–1987

    Article  CAS  Google Scholar 

  102. Kaul S, Anantharam V, Kanthasamy A, Kanthasamy AG (2005) Wild-type alpha-synuclein interacts with pro-apoptotic proteins PKCdelta and BAD to protect dopaminergic neuronal cells against MPP+-induced apoptotic cell death. Brain Res Mol Brain Res 139:137–152

    Article  PubMed  CAS  Google Scholar 

  103. Kicinska A, Swida A, Bednarczyk P, Koszela-Piotrowska I, Choma K, Dolowy K, Szewczyk A, Jarmuszkiewicz W (2007) ATP-sensitive potassium channel in mitochondria of the eukaryotic microorganism Acanthamoeba castellanii. J Biol Chem 282:17433–17441

    Article  PubMed  CAS  Google Scholar 

  104. Kopustinskiene DM, Pollesello P, Saris NE (2001) Levosimendan is a mitochondrial K (ATP) channel opener. Eur J Pharmacol 428:311–314

    Article  PubMed  CAS  Google Scholar 

  105. Kopustinskiene DM, Toleikis A, Saris NE (2003) Adenine nucleotide translocase mediates the K(ATP) channelopeners-induced proton and potassium flux to the mitochondrial matrix. J Bioenerg Biomembr 35:141–148

    Article  PubMed  CAS  Google Scholar 

  106. Koszela-Piotrowska I, Matkovic K, Szewczyk A, Jarmuszkiewicz W (2009) A large-conductance calcium-activated potassium channel in potato (Solanum tuberosum) tuber mitochondria. Biochem J 424:307–316

    Article  PubMed  CAS  Google Scholar 

  107. Kosztka L, Rusznák Z, Nagy D, Nagy Z, Fodor J, Szucs G, Telek A, Gönczi M, Ruzsnavszky O, Szentandrássy N, Csernoch L (2011) Inhibition of TASK-3 (KCNK9) channel biosynthesis changes cell morphology and decreases both DNA content and mitochondrial function of melanoma cells maintained in cell culture. Melanoma Res 21:308–322

    Article  PubMed  CAS  Google Scholar 

  108. Kozoriz MG, Church J, Ozog MA, Naus CC, Krebs C (2010) Temporary sequestration of potassium by mitochondria in astrocytes. J Biol Chem 285(41):31107–31119

    Article  PubMed  CAS  Google Scholar 

  109. Krenz M, Oldenburg O, Wimpee H, Cohen M-V, Garlid K-D, Critz S-D, Downey J-M, Benoit J-N (2002) Opening of ATPsensitive potassium channels causes generation of free radicals in vascular smooth muscle cells. Basic Res Cardiol 97:365–373

    Article  PubMed  CAS  Google Scholar 

  110. Kulawiak B, Kudin AP, Szewczyk A, Kunz WS (2008) BK channel openers inhibit ROS production of isolated rat brain mitochondria. Exp Neurol 212:543–547

    Article  PubMed  CAS  Google Scholar 

  111. Kumarswamy A, Chandna S (2009) Putative partners in Bax-mediated cytochrome c release: ANT, CypD, VSAC or none of them? Mitochondrion 9:1–8

    Article  PubMed  CAS  Google Scholar 

  112. Kwong LK, Sohal RS (1998) Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch Biochem Biophys 350:118–126

    Article  PubMed  CAS  Google Scholar 

  113. Lawson K (2000) Potassium channel openers as potential therapeutic weapons in ion channel disease. Kidney Int 57:838–845

    Article  PubMed  CAS  Google Scholar 

  114. Leptihn S, Thompson JR, Ellory JC, Tucker SJ, Wallace MI (2011) In vitro reconstitution of eukaryotic ion channels using droplet interface bilayers. J Am Chem Soc 133:9370–9375

    Article  PubMed  CAS  Google Scholar 

  115. Liu X, Hajnóczky G (2011) Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress. Cell Death Differ 18:1561–1572

    Article  PubMed  CAS  Google Scholar 

  116. Liu Y, Sato T, Seharaseyon J, Szewczyk A, O’Rourke B, Marbán E (1999) Mitochondrial ATP-dependent potassium channels. Viable candidate effectors of ischemic preconditioning. Ann N Y Acad Sci 874:27–37

    Article  PubMed  CAS  Google Scholar 

  117. Liu Y, Ytrehus K, Downey JM (1994) Evidence that translocation of protein kinase C is a key event during ischemic preconditioning of rabbit myocardium. J Mol Cell Cardiol 26:661–668

    Article  PubMed  CAS  Google Scholar 

  118. Ljubkovic M, Marinovic J, Fuchs A, Bosnjak ZJ, Bienengraeber M (2006) Targeted expression of Kir6.2 in mitochondria confers protection against hypoxic stress. J Physiol 577(1):17–29

    Article  PubMed  CAS  Google Scholar 

  119. Maack C, Dabew ER, Hohl M, Schäfers HJ, Böhm M (2009) Endogenous activation of mitochondrial KATP channels protects human failing myocardium from hydroxyl radical induced stunning. Circ Res 105:811–817

    Article  PubMed  CAS  Google Scholar 

  120. Malinska D, Kulawiak B, Kudin AP, Kovacs R, Huchzermeyer C, Kann O, Szewczyk A, Kunz WS (2010) Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation. Biochim Biophys Acta 1797:1163–1170

    Article  PubMed  CAS  Google Scholar 

  121. Malinska D, Kulawiak B, Wrzosek A, Kunz WS, Szewczyk A (2010) The cytoprotective action of the potassium channel opener BMS-191095 in C2C12 myoblasts is related to the modulation of calcium homeostasis. Cell Physiol Biochem 26:235–246

    Article  PubMed  CAS  Google Scholar 

  122. Malinska D, Mirandola SR, Kunz WS (2010) Mitochondrial potassium channels and reactive oxygen species. FEBS Lett 584:2043–2048

    Article  PubMed  CAS  Google Scholar 

  123. Manintveld OC, Sluiter W, Dekkers DH, te Lintel HM, Lamers JM, Verdouw PD, Duncker DJ (2011) Involvement of reperfusion injury salvage kinases in preconditioning depends critically on the preconditioning stimulus. Exp Biol Med 236:874–882

    Article  CAS  Google Scholar 

  124. Matkovic K, Koszela-Piotrowska I, Jarmuszkiewicz W, Szewczyk A (2011) Ion conductance pathways in potato tuber (Solanum tuberosum) inner mitochondrial membrane. Biochim Biophys Acta 1807:275–285

    Article  PubMed  CAS  Google Scholar 

  125. Meredith AL, Thorneloe KS, Werner ME, Nelson MT, Aldrich RW (2004) Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel. J Biol Chem 279:36746–36752

    Article  PubMed  CAS  Google Scholar 

  126. Miki T, Nagashima K, Tashiro F, Kotake K, Yoshitomi H, Tamamoto A, Gonoi T, Iwanaga T, Miyazaki J, Seino S (1998) Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci USA 95:10402–10406

    Article  PubMed  CAS  Google Scholar 

  127. Miro-Casas E, Ruiz-Meana M, Agullo E, Stahlhofen S, Rodríguez-Sinovas A, Cabestrero A, Jorge I, Torre I, Vazquez J, Boengler K, Schulz R, Heusch G, Garcia-Dorado D (2009) Connexin43 in cardiomyocyte mitochondria contributes to mitochondrial potassium uptake. Cardiovasc Res 83:747–756

    Article  PubMed  CAS  Google Scholar 

  128. Mironova GD, Negoda AE, Marinov BS, Paucek P, Costa AD, Grigoriev SM, Skarga YY, Garlid KD (2004) Functional distinctions between the mitochondrial ATP-dependent K+ channel (mitoKATP) and its inward rectifier subunit (mitoKIR). J Biol Chem 279:32562–32568

    Article  PubMed  CAS  Google Scholar 

  129. Mironova GD, Skarga YY, Grigoriev SM, Negoda AE, Kolomytkin OV, Marinov BS (1999) Reconstitution of the mitochondrial ATP-dependent potassium channel into bilayer lipid membrane. J Bioenerg Biomembr 31:159–163

    Article  PubMed  CAS  Google Scholar 

  130. Miura T, Tanno M (2010) Mitochondria and GSK-3beta in cardioprotection against ischemia/reperfusion injury. Cardiovasc Drugs Ther 24:255–263

    Article  PubMed  CAS  Google Scholar 

  131. Munn EA (1974) The structure of mitochondria. Academic, London/New York

    Google Scholar 

  132. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  PubMed  CAS  Google Scholar 

  133. Ng KE, Schwarzer S, Duchen MR, Tinker A (2010) The intracellular localization and function of the ATP-sensitive K+ channel subunit Kir6.1. J Membr Biol 234:137–147

    Article  PubMed  CAS  Google Scholar 

  134. Nowikovsky K, Schweyen RJ, Bernardi P (2009) Pathophysiology of mitochondrial volume homeostasis: potassium transport and permeability transition. Biochim Biophys Acta 1787:345–350

    Article  PubMed  CAS  Google Scholar 

  135. Oldenburg O, Cohen MV, Yellon DM, Downey JM (2002) Mitochondrial K(ATP) channels: role in cardioprotection. Cardiovasc Res 55:429–437

    Article  PubMed  CAS  Google Scholar 

  136. O’Rourke B (2004) Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res 94:420–432

    Article  PubMed  CAS  Google Scholar 

  137. O’Rourke B (2007) Mitochondrial ion channels. Annu Rev Physiol 69:19–49

    Article  PubMed  CAS  Google Scholar 

  138. O’Rourke B, Cortassa S, Aon MA (2005) Mitochondrial ion channels: gatekeepers of life and death. Physiology (Bethesda) 20:303–315

    Article  Google Scholar 

  139. Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R, Working Group of Cellular Biology of Heart of European Society of Cardiology (2010) Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 87:406–423

    Article  PubMed  CAS  Google Scholar 

  140. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    Article  PubMed  CAS  Google Scholar 

  141. Pastore D, Stoppelli MC, Di Fonzo N, Passarella S (1999) The existence of the K(+) channel in plant mitochondria. J Biol Chem 274(38):26683–26690

    Article  PubMed  CAS  Google Scholar 

  142. Pastore D, Trono D, Laus MN, Di Fonzo N, Flagella Z (2007) Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria. J Exp Bot 58:195–210

    Article  PubMed  CAS  Google Scholar 

  143. Patel AJ, Lazdunski M (2004) The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pflugers Arch 448:261–273

    Article  PubMed  CAS  Google Scholar 

  144. Pathania D, Millard M, Neamati N (2009) Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Advanced Drug Delivery Reviews 61:1250–1275

    Article  PubMed  CAS  Google Scholar 

  145. Paucek P, Yarov-Yarovoy V, Sun X, Garlid KD (1996) Inhibition of the mitochondrial KATP channel by long-chain acyl-CoA esters and activation by guanine nucleotides. J Biol Chem 271:32084–32088

    Article  PubMed  CAS  Google Scholar 

  146. Perrelli MG, Pagliaro P, Penna C (2011) Ischemia/reperfusion injury and cardioprotective mechanisms: role of mitochondria and reactive oxygen species. World J Cardiol 3:186–200

    Article  PubMed  Google Scholar 

  147. Petrosillo G, Ruggiero FM, Paradies G (2003) Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J 17:2202–2208

    Article  PubMed  CAS  Google Scholar 

  148. Petrosillo G, Ruggiero FM, Pistolese M, Paradies G (2001) Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation. Possible role in the apoptosis. FEBS Lett 509:435–438

    Article  PubMed  CAS  Google Scholar 

  149. Piwonska M, Wilczek E, Szewczyk A, Wilczynski GM (2008) Differential distribution of Ca2+-activated potassium channel beta4 subunit in rat brain: immunolocalization in neuronal mitochondria. Neuroscience 153:446–460

    Article  PubMed  CAS  Google Scholar 

  150. Queliconi BB, Wojtovich AP, Nadtochiy SM, Kowaltowski AJ, Brookes PS (2011) Redox regulation of the mitochondrial KATP channel in cardioprotection. Bioch Biophys Acta 1813:1309–1315

    Article  CAS  Google Scholar 

  151. Riess ML, Camara AKS, Heinen A, Eells JT, Henry MM, Stowe DF (2008) KATP channel openers have opposite effects on mitochondrial respiration under different energetic conditions. J Cardiovasc Pharmacol 51(5):483–491

    Article  PubMed  CAS  Google Scholar 

  152. Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P (2009) Ca(2+) transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787:1342–1351

    Article  PubMed  CAS  Google Scholar 

  153. Robin MA, Anandatheerthavarada HK, Fang JK, Cudic M, Otvos L, Avadhani NG (2001) Mitochondrial targeted cytochrome P450 2E1 (P450 MT5) contains an intact N terminus and requires mitochondrial specific electron transfer proteins for activity. J Biol Chem 276:24680–24689

    Article  PubMed  CAS  Google Scholar 

  154. Robin E, Simerabet M, Hassoun SM, Adamczyk S, Tavernier B, Vallet B, Bordet R, Lebuffe G (2011) Postconditioning in focal cerebral ischemia: role of the mitochondrial ATP-dependent potassium channel. Brain Res 1375:137–146

    Article  PubMed  CAS  Google Scholar 

  155. Rottlaender D, Boengler K, Wolny M, Michels G, Endres-Becker J, Motloch LJ, Schwaiger A, Buechert A, Schulz R, Heusch G, Hoppe UC (2010) Connexin 43 acts as a cytoprotective mediator of signal transduction by stimulating mitochondrial KATP channels in mouse cardiomyocytes. J Clin Invest 120(5):1441–1453. doi:10.1172/JCI40927

    Article  PubMed  CAS  Google Scholar 

  156. Rusznák Z, Bakondi G, Kosztka L, Pocsai K, Dienes B, Fodor J, Telek A, Gönczi M, Szucs G, Csernoch L (2008) Mitochondrial expression of the two-pore domain TASK-3 channels in malignantly transformed and non-malignant human cells. Virchows Arch 452:415–426

    Article  PubMed  CAS  Google Scholar 

  157. Safiulina D, Veksler V, Zharkovsky A, Kaasik A (2006) Loss of mitochondrial membrane potential is associated with increase in mitochondrial volume: physiological role in neurones. J Cell Physiol 206:347–353

    Article  PubMed  CAS  Google Scholar 

  158. Sakamoto K, Ohya S, Muraki K, Imaizumi Y (2008) A novel opener of large-conductance Ca2+-activated K+ (BK) channel reduces ischemic injury in rat cardiac myocytes by activating mitochondrial KCa channel. J Pharmacol Sci 108:135–139

    Article  PubMed  CAS  Google Scholar 

  159. Samavati L, Monick MM, Sanlioglu S, Buettner GR, Oberley LW, Hunninghake GW (2002) Mitochondrial K(ATP) channel openers activate the ERK kinase by an oxidant-dependent mechanism. Am J Physiol Cell Physiol 283:C273–C281

    PubMed  CAS  Google Scholar 

  160. Sanada S, Komuro I, Kitakaze M. (2011) Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning and translational aspects of protective measures. Am J Physiol Heart Circ Physiol 301:H1723–H1741

    Google Scholar 

  161. Sarre A, Lange N, Kucera P, Raddatz E (2005) mitoKATP channel activation in the postanoxic developing heart protects EC coupling via NO-, ROS-, and PKC-dependent pathways. Am J Physiol Heart Circ Physiol 288:H1611–H1619

    Article  PubMed  CAS  Google Scholar 

  162. Sasaki N, Sato T, Ohler A, O’Rourke B, Marbán E (2000) Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Circulation 101:439–445

    PubMed  CAS  Google Scholar 

  163. Sassi N, De Marchi U, Fioretti B, Biasutto L, Gulbins E, Francolini F, Szabò I, Zoratti M (2010) An investigation of the occurrence and properties of the mitochondrial intermediate-conductance Ca2+-activated K+ channel mtKCa3.1. Biochim Biophys Acta Bioenergetics 1797:260–1267

    Article  CAS  Google Scholar 

  164. Sato T, Saito T, Saegusa N, Nakaya H (2005) Mitochondrial Ca2+-activated K+ channel in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A. Circulation 111:198–203

    Article  PubMed  CAS  Google Scholar 

  165. Sauvanet C, Duvezin-Caubet S, di Rago JP, Rojo M (2010) Energetic requirements and bioenergetic modulation of mitochondrial morphology and dynamics. Semin Cell Dev Biol 21:558–565

    Article  PubMed  CAS  Google Scholar 

  166. Scorrano L (2009) Opening the doors to cytochrome c: changes in mitochondrial shape and apoptosis. Int J Biochem Cell Biol 41:1875–1883

    Article  PubMed  CAS  Google Scholar 

  167. Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA, Korsmeyer SJ (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2:55–67

    Article  PubMed  CAS  Google Scholar 

  168. Selivanov VA, Votyakova TV, Pivtoraiko VN, Zeak J, Sukhomlin T, Trucco M, Roca J, Cascante M (2011) Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain. PLoS Comput Biol 7:e1001115

    Article  PubMed  CAS  Google Scholar 

  169. Selivanov VA, Votyakova TV, Zeak JA, Trucco M, Roca J, Cascante M (2009) Bistability of mitochondrial respiration underlies paradoxical reactive oxygen species generation induced by anoxia. PLoS Comput Biol 5(12):e1000619

    Article  PubMed  CAS  Google Scholar 

  170. Siemen D, Loupatatzis C, Borecky J, Gulbins E, Lang F (1999) Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun 257:549–554

    Article  PubMed  CAS  Google Scholar 

  171. Simerabet M, Robin E, Aristi I, Adamczyk S, Tavernier B, Vallet B, Bordet R, Lebuffe G (2008) Preconditioning by an in situ administration of hydrogen peroxide: involvement of reactive oxygen species and mitochondrial ATP-dependent potassium channel in a cerebral ischemia–reperfusion model. Brain Res 1240:177–184

    Article  PubMed  CAS  Google Scholar 

  172. Skalska J, Bednarczyk P, Piwońska M, Kulawiak B, Wilczynski G, Dołowy K, Kudin AP, Kunz WS, Szewczyk A (2009) Calcium ions regulate K+ uptake into brain mitochondria: the evidence for a novel potassium channel. Int J Mol Sci 10:1104–1120

    Article  PubMed  CAS  Google Scholar 

  173. Skalska J, Piwońska M, Wyroba E, Surmacz L, Wieczorek R, Koszela-Piotrowska I, Zielińska J, Bednarczyk P, Dołowy K, Wilczynski GM, Szewczyk A, Kunz WS (2008) A novel potassium channel in skeletal muscle mitochondria. Biochim Biophys Acta 1777:651–659

    Article  PubMed  CAS  Google Scholar 

  174. Speechly-Dick ME, Mocanu MM, Yellon DM (1994) Protein kinase C. Its role in ischemic preconditioning in the rat. Circ Res 75:586–590

    PubMed  CAS  Google Scholar 

  175. Spencer RH, Sokolov Y, Li H, Takenaka B, Milici AJ, Aiyar J, Nguyen A, Park H, Jap BK, Hall JE, Gutman GA, Chandy KG (1997) Purification, visualization, and biophysical characterization of Kv1.3 tetramers. J Biol Chem 272:2389–2395

    Article  PubMed  CAS  Google Scholar 

  176. Szabadkai G, Simoni AM, Bianchi K, De Stefani D, Leo S, Wieckowski MR, Rizzuto R (2006) Mitochondrial dynamics and Ca2+ signaling. Biochim Biophys Acta 1763:442–449

    Article  PubMed  CAS  Google Scholar 

  177. Szabó I, Bock J, Grassmé H, Soddemann M, Wilker B, Lang F, Zoratti M, Gulbins E (2008) Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes. Proc Natl Acad Sci USA 105:14861–14866

    Article  PubMed  Google Scholar 

  178. Szabò I, Bock J, Jekle A, Soddemann M, Adams C, Lang F, Zoratti M, Gulbins E (2005) A novel potassium channel in lymphocyte mitochondria. J Biol Chem 280:12790–12798

    Article  PubMed  CAS  Google Scholar 

  179. Szabò I, Soddemann M, Leanza L, Zoratti M, Gulbins E (2011) Single point mutations of a lysine residue change function of Bax and Bcl-xL expressed in Bax- and Bak-less mouse embryonic fibroblasts—novel insights into the molecular mechanisms of Bax-induced apoptosis. Cell Death Diff 18:427–438

    Article  CAS  Google Scholar 

  180. Szabò I, Zoratti M, Gulbins E (2010) Contribution of voltage-gated potassium channels to the regulation of apoptosis. FEBS Lett 584:049–056

    Article  CAS  Google Scholar 

  181. Szewczyk A, Jarmuszkiewicz W, Kunz WS (2009) Mitochondrial potassium channels. IUBMB Life 61:134–143

    Article  PubMed  CAS  Google Scholar 

  182. Szewczyk A, Kajma A, Malinska D, Wrzosek A, Bednarczyk P, Zabłocka B, Dołowy K (2010) Pharmacology of mitochondrial potassium channels: dark side of the field. FEBS Lett 584:2063–2069

    Article  PubMed  CAS  Google Scholar 

  183. Szewczyk A, Skalska J, Głab M, Kulawiak B, Malińska D, Koszela-Piotrowska I, Kunz WS (2006) Mitochondrial potassium channels: from pharmacology to function. Biochim Biophys Acta 1757:715–720

    Article  PubMed  CAS  Google Scholar 

  184. Tai KK, McCrossan ZA, Abbott GW (2003) Activation of mitochondrial ATP-sensitive potassium channels increases cell viability against rotenone-induced cell death. J Neurochem 84:1193–1200

    Article  PubMed  CAS  Google Scholar 

  185. Tanaka N, Fujita M, Handa H, Murayama S, Uemura M, Kawamura Y, Mitsui T, Mikami S, Tozawa Y, Yoshinaga T, Komatsu S (2004) Proteomics of the rice cell: systematic identification of the protein populations in subcellular compartments. Mol Genet Genomics 271:566–576

    Article  PubMed  CAS  Google Scholar 

  186. Thuc LC, Teshima Y, Takahashi N, Nagano-Torigoe Y, Ezaki K, Yufu K, Nakagawa M, Hara M, Saikawa T (2010) Mitochondrial K(ATP) channels-derived reactive oxygen species activate pro-survival pathway in pravastatin-induced cardioprotection. Apoptosis 15:669–678

    Article  PubMed  CAS  Google Scholar 

  187. Toro L, Harpreet S, Rong L, Rodriguez-Pedro G, Bopassa JC, Yong W, Stefani E (2011) Molecular characterization of BKCa channel in cardiac mitochondria. Eur Biophys J 40:S172

    Google Scholar 

  188. Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414

    Article  PubMed  CAS  Google Scholar 

  189. Twig G, Shirihai OS (2011) The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal 14:1939–1951

    Article  PubMed  CAS  Google Scholar 

  190. Valerio A, Bertolotti P, Delbarba A, Perego C, Dossena M, Ragni M, Spano P, Carruba MO, De Simoni MG, Nisoli E (2011) Glycogen synthase kinase-3 inhibition reduces ischemic cerebral damage, restores impaired mitochondrial biogenesis and prevents ROS production. J Neurochem 116:1148–1159

    Article  PubMed  CAS  Google Scholar 

  191. Vicente R, Escalada A, Villalonga N, Texidó L, Roura-Ferrer M, Martín-Satué M, López-Iglesias C, Soler C, Solsona C, Tamkun MM, Felipe A (2006) Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K + channel in macrophages. J Biol Chem 281:37675–37685

    Article  PubMed  CAS  Google Scholar 

  192. Vigneron F, Dos Santos P, Lemoine S, Bonnet M, Tariosse L, Couffinhal T, Duplaà C, Jaspard-Vinassa B (2011) GSK-3β at the crossroads in the signalling of heart preconditioning: implication of mTOR and Wnt pathways. Cardiovasc Res 90:49–56

    Article  PubMed  CAS  Google Scholar 

  193. Wang X, Yin C, Xi L, Kukreja RC (2004) Opening of Ca2+-activated K+ channels triggers early and delayed preconditioning against I/R injury independent of NOS in mice. Am J Physiol Heart Circ Physiol 287:H2070–H2077

    Article  PubMed  CAS  Google Scholar 

  194. Wojtovich AP, Burwell LS, Sherman TA, Nehrke KW, Brookes PS (2008) The C. elegans mitochondrial K+ATP channel: a potential target for preconditioning. Biochem Biophys Res Comm 376:625–628

    Article  PubMed  CAS  Google Scholar 

  195. Wojtovich AP, Williams DM, Karcz MK, Lopes CM, Gray DA, Nehrke KW, Brookes PS (2010) A novel mitochondrial K(ATP) channel assay. Circ Res 106:1190–1196

    Article  PubMed  CAS  Google Scholar 

  196. Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O’Rourke B. (2002) Cytoprotective role of Ca2+-activated K+ channels in the cardiac inner mitochondrial membrane. Science 298:1029–1033

    Google Scholar 

  197. Ye B, Kroboth S, Pu JL, Sims J, Aggarwal N, McNally E, Makielski J, Shi NQ (2009) Molecular identification and functional characterization of a mitochondrial SUR2 splice variant generated by intra-exonic splicing. Circ Res 105:1083–1093

    Article  PubMed  CAS  Google Scholar 

  198. Ytrehus K, Liu Y, Downey JM (1994) Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Physiol 266:H1145–H1152

    PubMed  CAS  Google Scholar 

  199. Zoeteweij JP, van de Water B, de Bont HJ, Nagelkerke JF (1994) Mitochondrial K+ as modulator of Ca(2+)-dependent cytotoxicity in hepatocytes. Novel application of the K+-sensitive dye PBFI (K+-binding benzofuran isophthalate) to assess free mitochondrial K+ concentrations. Biochem J 299:539–543

    PubMed  CAS  Google Scholar 

  200. Zoratti M, De Marchi U, Gulbins E, Szabo I (2009) Novel channels of the inner mitochondrial membrane. Biochim Biophys Acta 1787:351–363

    Article  PubMed  CAS  Google Scholar 

  201. Zoratti M, Szabò I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    PubMed  Google Scholar 

  202. Zweier JL, Talukder MA (2006) The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 70:181–189

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all co-authors of the research performed by their groups and reported in this review, for their important contributions. The work carried out in the authors’ laboratories was supported in part by Italian Association for Cancer Research grants (to I.S. n. 5118 and to M.Z.), an European Molecular Biology Organization Young Investigator Program and a Progetti di Rilevante Interesse Nazionale grant (to I.S.), by DFG-grant Gu 335/13-3, the International Association for Cancer Research (to E.G.) and by a Fondazione CARIPARO grant (to M.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ildikò Szabò.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabò, I., Leanza, L., Gulbins, E. et al. Physiology of potassium channels in the inner membrane of mitochondria. Pflugers Arch - Eur J Physiol 463, 231–246 (2012). https://doi.org/10.1007/s00424-011-1058-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-1058-7

Keywords

Navigation