Skip to main content
Log in

Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylurea-based blockers

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Previous studies suggested that four transmembrane domains 5, 6, 11, 12 make the greatest contribution to forming the pore of the CFTR chloride channel. We used excised, inside-out patches from oocytes expressing CFTR with alanine-scanning mutagenesis in amino acids in TM6 and TM12 to probe CFTR pore structure with four blockers: glibenclamide (Glyb), glipizide (Glip), tolbutamide (Tolb), and Meglitinide. Glyb and Glip blocked wildtype (WT)-CFTR in a voltage-, time-, and concentration-dependent manner. At V M = −120 mV with symmetrical 150 mM Cl solution, fractional block of WT-CFTR by 50 μM Glyb and 200 μM Glip was 0.64 ± 0.03 (n = 7) and 0.48 ± 0.02 (n = 7), respectively. The major effects on block by Glyb and Glip were found with mutations at F337, S341, I344, M348, and V350 of TM6. Under similar conditions, fractional block of WT-CFTR by 300 μM Tolb was 0.40 ± 0.04. Unlike Glyb, Glip, and Meglitinide, block by Tolb lacked time-dependence (n = 7). We then tested the effects of alanine mutations in TM12 on block by Glyb and Glip; the major effects were found at N1138, T1142, V1147, N1148, S1149, S1150, I1151, and D1152. From these experiments, we infer that amino acids F337, S341, I344, M348, and V350 of TM6 face the pore when the channel is in the open state, while the amino acids of TM12 make less important contributions to pore function. These data also suggest that the region between F337 and S341 forms the narrow part of the CFTR pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP IV, Boyd AE III, González G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA (1995) Cloning of the β-cell high-affinity sulfonlyurea receptor: a regulator of insulin secretion. Science 268:423–426

    Article  PubMed  CAS  Google Scholar 

  2. Alexander C, Ivetac A, Liu X, Norimatsu Y, Serrano JR, Landstrom A, Sansom M, Dawson DC (2009) Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore. Biochem 48:10078–10088

    Article  CAS  Google Scholar 

  3. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for polyspecific drug binding. Science 323:1718–1722

    Article  PubMed  CAS  Google Scholar 

  4. Amalric M, Heurteaux C, Nieoullon A, Lazdunski M (1992) Behavioral effects of modulators of ATP-sensitive K+ channels in the rat dorsal pallidum. Eur J Pharmacol 217:71–77

    Article  PubMed  CAS  Google Scholar 

  5. Anderson MP, Berger HA, Rich DP, Gregory RJ, Smith AE, Welsh MJ (1991) Nucleoside triphosphates are required to open the CFTR chloride channel. Cell 67:775–784

    Article  PubMed  CAS  Google Scholar 

  6. Bai Y, Li M, Hwang TC (2010) Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation. J Gen Physiol 136:393–309

    Article  Google Scholar 

  7. Baukrowitz T, Hwang TC, Nairn AC, Gadsby DC (1994) Coupling of CFTR Cl channel gating to ATP hydrolysis cycle. Neuron 12:473–482

    Article  PubMed  CAS  Google Scholar 

  8. Cai Z, Lansdell KA, Sheppard DN (1999) Inhibition of heterologously expressed cystic fibrosis transmembrane conductance regulator Cl channels by non-sulphonylurea hypoglycaemic agents. Br J Pharmacol 128:108–118

    Article  PubMed  CAS  Google Scholar 

  9. Cheung M, Akabas MH (1997) Locating the anion-selectivity filter of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. J Gen Physiol 109:289–299

    Article  PubMed  CAS  Google Scholar 

  10. Chien EYT, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newan AH, Javitch JA, Cherezov V, Stevens RC (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095

    Article  PubMed  CAS  Google Scholar 

  11. Cotton JF, Welsh MJ (1999) Cystic fibrosis-associated mutations at arginine 347 alter the pore architecture for CFTR. Evidence for disruption of a salt bridge. J Biol Chem 274:5429–5435

    Article  Google Scholar 

  12. Cui G, Zhang ZR, O’Brien AR, Song B, McCarty NA (2008) Mutations at arginine 352 alter the pore architecture of CFTR. J Membr Biol 222:91–106

    Article  PubMed  CAS  Google Scholar 

  13. Dawson DC, Liu X, Zhang Z-R, McCarty NA (2003) Anion conduction in CFTR: mechanisms and models. In: Kirk K, Dawson DC (eds) The CFTR chloride channel. Landes, Georgetown, pp 1–34

    Google Scholar 

  14. Dorschner H, Brekardin E, Uhde I, Schwanstecher C, Schwanstecher M (1999) Stoichiometry of sulfonylurea-induced ATP-sensitive potassium channel closure. Mol Pharmacol 55:1060–1066

    PubMed  CAS  Google Scholar 

  15. Fatehi M, St Aubin CN, Linsdell P (2007) On the origin of asymmetric interactions between permeant anions and the cystic fibrosis transmembrane conductance regulator chloride channel pore. Biophys J 92:1241–1253

    Article  PubMed  CAS  Google Scholar 

  16. Fuller MD, Zhang Z-R, Cui G, Kubanek J, McCarty NA (2004) Inhibition of CFTR channels by a peptide toxin of scorpion venom. Am J Physiol Cell Physiol 287:C1328–C1341

    Article  PubMed  CAS  Google Scholar 

  17. Fuller MD, Zhang ZR, Cui G, McCarty NA (2005) The block of CFTR by scorpion venom is state dependent. Biophys J 89:3960–3975

    Article  PubMed  CAS  Google Scholar 

  18. Gong X, Linsdell P (2003) Mutation-induced blocker permeability and multiion block of the CFTR chloride channel pore. J Gen Physiol 122:673–687

    Article  PubMed  CAS  Google Scholar 

  19. Gong X, Linsdell P (2003) Molecular determinants and role of an anion binding site in the external mouth of the CFTR chloride channel pore. J Physiol 549:387–397

    Article  PubMed  CAS  Google Scholar 

  20. Guinamard R, Akabas MH (1999) Arg 352 is a major determinant of charge selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel. Biochem 38:5528–5537

    Article  CAS  Google Scholar 

  21. Gupta J, Linsdell P (2002) Point mutations in the pore region directly or indirectly affect glibenclamide block of the CFTR chloride channel. Pflugers Arch 443:739–747

    Article  PubMed  CAS  Google Scholar 

  22. Hwang TC, Nagel G, Nairn AC, Gadsby DC (1994) Regulation of the gating of cystic fibrosis transmembrane conductance regulator Cl channels by phosphorylation and ATP hydrolysis. Proc Natl Acad Sci USA 91:4698–4702

    Article  PubMed  CAS  Google Scholar 

  23. Linsdell P (2005) Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 280:8945–8950

    Article  PubMed  CAS  Google Scholar 

  24. Linsdell P, Evagelidis A, Hanrahan JW (2000) Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Biophys J 78:2973–2982

    Article  PubMed  CAS  Google Scholar 

  25. Linsdell P, Hanrahan JW (1996) Flickery block of single CFTR chloride channels by intracellular anions and osmolytes. Am J Physiol 271:C628–C634

    PubMed  CAS  Google Scholar 

  26. Linsdell P, Hanrahan JW (1996) Disulphonic stilbene block of cystic fibrosis transmembrane conductance regulator Cl channels expressed in a mammalian cell line and its regulation by a critical pore residue. J Physiol 496:687–693

    PubMed  CAS  Google Scholar 

  27. McCarty NA (2000) Permeation through the CFTR chloride channel. J Exp Biol 203:1947–1962

    PubMed  CAS  Google Scholar 

  28. McCarty NA, Zhang Z-R (2001) Identification of a region of strong discrimination in the pore of CFTR. Am J Physiol Lung Cell Mol Physiol 281:L852–L867

    PubMed  CAS  Google Scholar 

  29. McDonough S, Davidson N, Lester HA, McCarty NA (1994) Novel pore-lining residues in CFTR that govern permeation and open-channel block. Neuron 13:623–634

    Article  PubMed  CAS  Google Scholar 

  30. McNicholas CM, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME (1996) Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proc Natl Acad Sci USA 93:8083–8088

    Article  PubMed  CAS  Google Scholar 

  31. Monron JP, Lehn P, Callebaut I (2009) Molecular models of the open and closed states of the whole human CFTR protein. Cell Mol Life Sci 66:3469–3486

    Article  Google Scholar 

  32. Mornon JP, Lehn P, Callebaut I (2008) Atomic model of human cystic fibrosis transmembrane conductance regulator: membrane-spanning domains and coupling interfaces. Cell Mol Life Sci 65:2594–2612

    Article  PubMed  CAS  Google Scholar 

  33. Muanprasat C, Sonawane ND, Salinas D, Taddei A, Galietta LJ, Verkman AS (2004) Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J Gen Physiol 124:125–137

    Article  PubMed  CAS  Google Scholar 

  34. Raeburn D, Brown TJ (1991) RP49356 and cromakalim relax airway smooth muscle in vitro by opening a sulfonylurea-sensitive K+ channel: a comparison with nifedipine. J Pharmacol Exp Ther 256:480–485

    PubMed  CAS  Google Scholar 

  35. Reyes CL, Chang G (2005) Structure of the ABC transporter MsbA in complex with ADP.vanadate and lipopolysaccharide. Science 308:1028–1031

    Article  PubMed  CAS  Google Scholar 

  36. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou J-L, Drumm ML, Iannuzzi MC, Collins FC, Tsui L-C (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  PubMed  CAS  Google Scholar 

  37. Schultz BD, DeRoos AD, Venglarik CJ, Singh AK, Frizzell RA, Bridges RJ (1996) Glibenclamide blockade of CFTR chloride channels. Am J Physiol 271:L192–L200

    PubMed  CAS  Google Scholar 

  38. Serohijos AW, Hegedus T, Aleksandrov AA, He L, Cui L, Dokholyan NV, Riordan JR (2008) Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR3D structure crucial to assembly and channel function. Proc Natl Acad Sci USA 105:3256–3261

    Article  PubMed  CAS  Google Scholar 

  39. Sheppard DN (2004) CFTR channel pharmacology: novel pore blockers identified by high-throughput screening. J Gen Physiol 124:109–113

    Article  PubMed  CAS  Google Scholar 

  40. Sheppard DN, Robinson KA (1997) Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane regulator Cl channels expressed in a murine cell line. J Physiol 503:333–346

    Article  PubMed  CAS  Google Scholar 

  41. Sheppard DN, Welsh MJ (1992) Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents. J Gen Physiol 100:573–591

    Article  PubMed  CAS  Google Scholar 

  42. Smith SS, Liu X, Zhang Z-R, Sun F, Kriewall TE, McCarty NA, Dawson DC (2001) CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction. J Gen Physiol 118:407–431

    Article  PubMed  CAS  Google Scholar 

  43. Tabcharani JA, Linsdell P, Hanrahan JW (1997) Halide permeation in wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels. J Gen Physiol 110:341–354

    Article  PubMed  CAS  Google Scholar 

  44. Tabcharani JA, Rommens JM, Hou YX, Chang XB, Tsui LC, Riordan JR, Hanrahan JW (1993) Multi-ion pore behavior in the CFTR chloride channel. Nature 366:79–82

    Article  PubMed  CAS  Google Scholar 

  45. Venglarik CJ, Schultz BD, DeRoos AD, Singh AK, Bridges RJ (1996) Tolbutamide causes open channel blockade of cystic fibrosis transmembrane conductance regulator Cl channels. Biophys J 70:2696–2703

    Article  PubMed  CAS  Google Scholar 

  46. Zhang Z-R, Cui G, Liu X, Song S, Dawson DC, McCarty NA (2005) Determination of the functional unit of the cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem 280:458–468

    PubMed  CAS  Google Scholar 

  47. Zhang Z-R, Cui G, Zeltwanger S, McCarty NA (2004) Time-dependent interactions of glibenclamide with CFTR: kinetically complex block of macroscopic currents. J Membr Biol 201:139–155

    Article  PubMed  CAS  Google Scholar 

  48. Zhang Z-R, McDonough SI, McCarty NA (2000) Interaction between permeation and gating in a putative pore-domain mutant in CFTR. Biophys J 79:298–313

    Article  PubMed  CAS  Google Scholar 

  49. Zhang Z-R, Zeltwanger S, McCarty NA (2000) Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes. J Membr Biol 175:35–52

    Article  PubMed  CAS  Google Scholar 

  50. Zhang Z-R, Zeltwanger S, McCarty NA (2004) Steady-state interactions of glibenclamide with CFTR: evidence for multiple sites in the pore. J Membr Biol 199:15–28

    Article  PubMed  CAS  Google Scholar 

  51. Zhang Z-R, Zeltwanger S, Smith SS, Dawson DC, McCarty NA (2002) Voltage-sensitive gating induced by a mutation in the fifth transmembrane domain of CFTR. Am J Physiol Lung Cell Mol Physiol 282:L135–L145

    PubMed  CAS  Google Scholar 

  52. Zhou JJ, Fatehi M, Linsdell P (2007) Direct and indirect effects of mutations at the outer mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Membr Biol 216:129–142

    Article  PubMed  CAS  Google Scholar 

  53. Zhou Z, Hu S, Hwang TC (2002) Probing an open CFTR pore with organic anion blockers. J Gen Physiol 120:647–662

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute for Diabetes, Digestive, and Kidney Diseases (DK056481 to N.A.M.). The authors thank Z.-R. Zhang for the comments.

Ethical standards

No specific ethical issues are related to reported experiments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nael A. McCarty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM doc

(DOC 2.04 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, G., Song, B., Turki, H.W. et al. Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylurea-based blockers. Pflugers Arch - Eur J Physiol 463, 405–418 (2012). https://doi.org/10.1007/s00424-011-1035-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-1035-1

Keywords

Navigation