Skip to main content

Advertisement

Log in

Interventricular differences in myofilament function in experimental congestive heart failure

  • Cardiovascular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

This study was conducted to identify molecular mechanisms which explain interventricular differences in myofilament function in experimental congestive heart failure (CHF). CHF was induced in rats by chronic aortic banding or myocardial infarction for 32–36 weeks. Right and left ventricular (RV, LV) myocytes were mechanically isolated, triton-skinned, and attached to a force transducer and motor arm. Myofilament force–[Ca2+] relations assessed maximal Ca2+-saturated force (F max) and the [Ca2+] at 50% of F max (EC50). Myofilament protein phosphorylation was determined via ProQ diamond phospho-staining. Protein kinase C (PKC)-α expression/activation and site-specific phosphorylation of cardiac troponin I (cTnI) and cardiac troponin T (cTnT) were measured via immunoblotting. Relative to controls, failing RV myocytes displayed a ~45% decrease in F max with no change in EC50, whereas failing LV myocytes displayed a ~45% decrease in F max and ~50% increase in EC50. Failing LV myofilaments were less Ca2+-sensitive (37% increase in EC50) than failing RV myofilaments. Expression and activation of PKC-α was increased twofold in failing RV myocardium and relative to the RV, PKC-α was twofold higher in the failing LV, while PKC-β expression was unchanged by CHF. PKC-α-dependent phosphorylation and PP1-mediated dephosphorylation of failing RV myofilaments increased EC50 and increased F max, respectively. Phosphorylation of cTnI and cTnT was greater in failing LV myofilaments than in failing RV myofilaments. RV myofilament function is depressed in experimental CHF in association with increased PKC-α signaling and myofilament protein phosphorylation. Furthermore, myofilament dysfunction is greater in the LV compared to the RV due in part to increased PKC-α activation and phosphorylation of cTnI and cTnT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Afzal N, Dhalla NS (1992) Differential changes in left and right ventricular SR calcium transport in congestive heart failure. Am J Physiol 262(3 Pt 2):H868–H874

    PubMed  CAS  Google Scholar 

  2. Anversa P, Beghi C, Kikkawa Y, Olivetti G (1986) Myocardial infarction in rats. Infarct size, myocyte hypertrophy, and capillary growth. Circ Res 58(1):26–37

    PubMed  CAS  Google Scholar 

  3. Belin RJ, Sumandea MP, Allen EJ, Schoenfelt K, Wang H, Solaro RJ, de Tombe PP (2007) Augmented protein kinase C-alpha-induced myofilament protein phosphorylation contributes to myofilament dysfunction in experimental congestive heart failure. Circ Res 101(2):195–204

    Article  PubMed  CAS  Google Scholar 

  4. Belin RJ, Sumandea MP, Kobayashi T, Walker LA, Rundell VL, Urboniene D, Yuzhakova M, Ruch SH, Geenen DL, Solaro RJ, de Tombe PP (2006) Left ventricular myofilament dysfunction in rat experimental hypertrophy and congestive heart failure. Am J Physiol Heart Circ Physiol 291(5):H2344–H2353

    Article  PubMed  CAS  Google Scholar 

  5. Bowling N, Walsh RA, Song G, Estridge T, Sandusky GE, Fouts RL, Mintze K, Packard T, Roden R, Bristow MR, Sabbah HN, Mizrahi JL, Gromo G, King GL, Vlahos CJ (1999) Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart. Circulation 99:384–391

    PubMed  CAS  Google Scholar 

  6. Braz JC, Gregory K, Pathak A, Zhao W, Sahin B, Klevitsky R, Kimball TF, Lorenz JN, Nairn AC, Liggett SB, Bodi I, Wang S, Schwartz A, Lakatta EG, DePaoli-Roach AA, Robbins J, Hewett TE, Bibb JA, Westfall MV, Kranias EG, Molkentin JD (2004) PKC-alpha regulates cardiac contractility and propensity towards heart failure. Nat Med 10:248–254

    Article  PubMed  CAS  Google Scholar 

  7. Burkart EM, Sumandea MP, Kobayashi T, Nili M, Martin AF, Homsher E, Solaro RJ (2003) Phosphorylation or glutamic acid substitution at protein kinase C sites on cardiac troponin I differentially depress myofilament tension and shortening velocity. J Biol Chem 278:11265–11272

    Article  PubMed  CAS  Google Scholar 

  8. Daniels MC, Naya T, Rundell VL, de Tombe PP (2007) Development of contractile dysfunction in rat heart failure: hierarchy of cellular events. Am J Physiol Regul Integr Comp Physiol 293(1):84–92

    Article  Google Scholar 

  9. De Tombe PP, Wannenburg T, Fan D, Little WC (1996) Right ventricular contractile protein function in rats with left ventricular myocardial infarction. Am J Physiol 271(1 Pt 2):H73–H79

    PubMed  Google Scholar 

  10. El-Armouche A, Pohlmann L, Schlossarek S, Starbatty J, Yeh YH, Nattel S, Dobrev D, Eschenhagen T, Carrier L (2007) Decreased phosphorylation levels of cardiac myosin-binding protein-C in human and experimental heart failure. J Mol Cell Cardiol 43(2):223–229

    Article  PubMed  CAS  Google Scholar 

  11. Fan DS, Wannenburg T, de Tombe PP (1997) Decreased myocyte tension development and calcium responsiviness in rat right ventricular pressure overload. Circulation 95:2312–2317

    PubMed  CAS  Google Scholar 

  12. Ganguly PK, Dhalla KS, Shao Q, Beamish RE, Dhalla NS (1997) Differential changes in sympathetic activity in left and right ventricles in congestive heart failure after myocardial infarction. Am Heart J 133(3):340–345

    Article  PubMed  CAS  Google Scholar 

  13. Gerdes AM, Moore JA, Hines JM, Kirkland PA, Bishop SP (1986) Regional differences in myocyte size in normal rat heart. Anat Rec 215(4):420–426

    Article  PubMed  CAS  Google Scholar 

  14. Goldspink PH, Montgomery DE, Walker LA, Urboniene D, McKinnery RD, Geenen DL, Solaro RJ, Buttrick P (2004) Protein kinase C epsilon overexpression alters myofilament properties and composition during the progression to heart failure. Circ Res 95:424–432

    Article  PubMed  CAS  Google Scholar 

  15. Janssen PM, Stull LB, Leppo MK, Altschuld RA, Marbán E (2003) Selective contractile dysfunction of left, not right, ventricular myocardium in the SHHF rat. Am J Physiol Heart Circ Physiol 284(3):H772–H778

    PubMed  CAS  Google Scholar 

  16. Jideama NM, Noland TA, Raynor RL, Blobe GC, Fabbro D, Kazanietz MG, Blumberg PM, Hannun YA, Kuo JF (1996) Phosphorylation specificities of protein kinase C isozymes for bovine cardiac troponin I and troponin T and sites within these proteins and regulation of myofilament properties. J Biol Chem 271:23277–23283

    Article  PubMed  CAS  Google Scholar 

  17. Jweied EE, McKinney RD, Walker LA, Brodsky I, Geha AS, Massad MG, Buttrick PM, de Tombe PP (2005) Depressed cardiac myofilament function in human diabetes mellitus. Am J Physiol Heart Circ Physiol 289(6):H2478–H2483

    Article  PubMed  CAS  Google Scholar 

  18. Kagaya Y, Hajjar RJ, Gwathmey JG, Barry WH, Lorell BH (1996) Long-term angiotensin-converting enzyme inhibition with fosinopril improves depressed responsiveness to Ca2+ in myocytes from aortic-banded rats. Circulation 94:2915–2922

    PubMed  CAS  Google Scholar 

  19. Kondo RP, Dederko DA, Teutsch C, Chrast J, Catalucci D, Chien KR, Giles WR (2006) Comparison of contraction and calcium handling between right and left ventricular myocytes from adult mouse heart: a role for repolarization waveform. J Physiol 571(Pt 1):131–146

    PubMed  CAS  Google Scholar 

  20. Li P, Hofmann PA, Li BS, Malhotra A, Cheng W, Sonnenblick EH, Meggs LG, Anversa P (1997) Myocardial infarction alters myofilament calcium sensitivity and mechanical behavior of myocytes. Am J Physiol Heart and Circ Physiol 272:H360–H370

    CAS  Google Scholar 

  21. Liu X, Shao Q, Dhalla NS (1995) Myosin light chain phosphorylation in cardiac hypertrophy and failure due to myocardial infarction. J Mol Cell Cardiol 27:2613–2624

    Article  PubMed  CAS  Google Scholar 

  22. Mann D, Bristow MR (2005) Mechanisms and models in heart failure: the biochemical model and beyond. Circulation 111:2837–2849

    Article  PubMed  Google Scholar 

  23. Marston SB, de Tombe PP (2008) Troponin phosphorylation and myofilament Ca2+ sensitivity in heart failure: increased or decreased? J of Mol & Cell Cardiol 45(5):603–607

    Article  CAS  Google Scholar 

  24. Messer AE, Jacques AM, Marston SB (2007) Troponin phosphorylation and regulatory function in human heart muscle: dephosphorylation of Ser23/24 on troponin I could account for the contractile defect in end-stage heart failure. J Mol Cell Cardiol 42(1):247–259

    Article  PubMed  CAS  Google Scholar 

  25. Montgomery DE, Rundell VL, Goldspink PH, Urboniene D, Geenen DL, de Tombe PP, Buttrick PM (2005) Protein kinase C epsilon induces systolic cardiac failure marked by exhausted inotropic reserve and intact Frank-Starling mechanism. Am J Physiol Heart Circ Physiol 289:H1881–H1888

    Article  PubMed  CAS  Google Scholar 

  26. Noguchi T, Kihara Y, Begin KJ, Gorga JA, Palmiter KA, LeWinter MM, VanBuren P (2003) Altered myocardial thin-filament function in the failing Dahl salt-sensitive rat heart: amelioration by endothelin blockade. Circulation 107:630–635

    Article  PubMed  CAS  Google Scholar 

  27. Noguchi T, Hunlich M, Camp PC, Begin KJ, El-Zaru M, Patten R, Leavitt BJ, Ittleman FP, Alpert NR, Lewinter MM, Vanburen P (2004) Thin filament-based modulation of contractile performance in human heart failure. Circulation 110:982–987

    Article  PubMed  Google Scholar 

  28. Noland TA, Raynor RL, Kuo JF (1989) Identification of sites phosphorylated in bovine cardiac troponin I and troponin T by protein kinase C and comparative substrate activity of synthetic peptides containing the phosphorylation sites. J Biol Chem 264:20778–20785

    PubMed  CAS  Google Scholar 

  29. Olsson MC, Patel JR, Fitzsimons DP, Walker JW, Moss RL (2004) Basal myosin light chain phosphorylation is a determinant of Ca2+ sensitivity of force and activation dependence of the kinetics of myocardial force development. Am J Physiol Heart Circ Physiol 287:H2712–H2718

    Article  PubMed  CAS  Google Scholar 

  30. Perez NG, Hashimoto K, McCune S, Altschuld RA, Marbán E (1999) Origin of contractile dysfunction in heart failure: calcium cycling versus myofilaments. Circulation: 1077–1083

  31. Perreault CL, Bing OH, Brooks WW, Ransil BJ, Morgan JP (1990) Differential effects of cardiac hypertrophy and failure on right versus left ventricular calcium activation. Circ Res 67:707–712

    PubMed  CAS  Google Scholar 

  32. Roman BB, Goldspink PH, Spaite E, Urboniene D, McKinnery R, Geenen DL, Solaro RJ, Buttrick PM (2004) Inhibition of PKC phosphorylation of cTnI improves cardiac performance. Am J Physiol Heart Circ Physiol 286:H2089–H2095

    Article  PubMed  CAS  Google Scholar 

  33. Scruggs SB, Walker LA, Lyu T, Geenen DL, Solaro RJ, Buttrick PM, Goldspink PH (2006) Partial replacement of cardiac troponin I with a non-phosphorylatable mutant at serines 43/45 attenuates the contractile dysfunction associated with PKCepsilon phosphorylation. J Mol Cell Cardiol 40(4):465–473

    Article  PubMed  CAS  Google Scholar 

  34. Scruggs SB, Hinken AC, Thawornkaiwong A, Robbins J, Walker LA, de Tombe PP, Geenen DL, Buttrick PM, Solaro RJ (2009) Ablation of ventricular myosin regulatory light chain phosphorylation in mice causes cardiac dysfunction in situ and affects neighboring myofilament protein phosphorylation. J Biol Chem 284(8):5097–5106

    Article  PubMed  CAS  Google Scholar 

  35. Sethi R, Elimban V, Chapman D, Dixon IM, Dhalla NS (1998) Differential alterations in left and right ventricular G-proteins in congestive heart failure due to myocardial infarction. J Mol Cell Cardiol 30(11):2153–2163

    Article  PubMed  CAS  Google Scholar 

  36. Sethi R, Dhalla KS, Beamish RE, Dhalla NS (1997) Differential changes in left and right ventricular adenylyl cyclase activities in congestive heart failure. Am J Physiol 272(2 Pt 2):H884–H893

    PubMed  CAS  Google Scholar 

  37. Sumandea MP, Pyle WG, Kobayashi T, de Tombe PP, Solaro RJ (2003) Identification of functionally critical protein kinase C phosphorylation residue of cardiac troponin T. J Biol Chem 278:35135–35144

    Article  PubMed  CAS  Google Scholar 

  38. Sumandea MP, Vahebi S, Sumandea CA, Garcia-Cazarin ML, Staidle J, Homsher E (2009) Impact of cardiac troponin TN-terminal deletion and phosphorylation on myofilament function. Biochemistry 48(32):7722–7731

    Article  PubMed  CAS  Google Scholar 

  39. Sumandea MP, Burkart EB, Kobayashi T, de Tombe PP, Solaro RJ (2004) Molecular and integrated biology of thin filament protein phosphorylation in heart muscle. Ann N Y Acad Sci 1015:39–52

    Article  PubMed  CAS  Google Scholar 

  40. Sumandea MP, Rybin VO, Hinken AC, Wang C, Kobayashi T, Harleton E, Sievert G, Balke CW, Feinmark SJ, Solaro RJ, Steinberg SF (2008) Tyrosine phosphorylation modifies protein kinase C delta-dependent phosphorylation of cardiac troponin I. J Biol Chem 283(33):22680–22689

    Article  PubMed  CAS  Google Scholar 

  41. Urboniene D, Dias FA, Peña JR, Walker LA, Solaro RJ, Wolska BM (2005) Expression of slow skeletal troponin I in adult mouse heart helps to maintain the left ventricular systolic function during respiratory hypercapnia. Circ Res 97(1):70–77, Biochemistry. 2009 Aug 18;48(32):7722–31

    Article  PubMed  CAS  Google Scholar 

  42. Vahebi S, Ota A, Li M, Warren CM, de Tombe PP, Wang Y, Solaro RJ (2007) p38-MAPK induced dephosphorylation of alpha-tropomyosin is associated with depression of myocardial sarcomeric tension and ATPase activity. Circ Res 100(3):408–415

    Article  PubMed  CAS  Google Scholar 

  43. van Dijk SJ, Dooijes D, dos Remedios C, Michels M, Lamers JM, Winegrad S, Schlossarek S, Carrier L, ten Cate FJ, Stienen GJ, van der Velden J (2009) Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation 119(11):1473–1483

    Article  PubMed  Google Scholar 

  44. Voelkel NF, Quaife RA, Leinwand LA, National Heart, Lung, and Blood Institute (2006) Working Group on Cellular and Molecular Mechanisms of Right Heart Failure Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 114(17):1883–1891

    Article  PubMed  Google Scholar 

  45. Wang J, Liu X, Sentex E, Takeda N, Dhalla NS (2003) Increased expression of protein kinase C isoforms in heart failure due to myocardial infarction. Am J Physiol Heart Circ Physiol 284:H2277–H2287

    PubMed  CAS  Google Scholar 

  46. Wang GY, McCloskey DT, Turcato S, Swigart PM, Simpson PC, Baker AJ (2006) Contrasting inotropic responses to alpha1-adrenergic receptor stimulation in left versus right ventricular myocardium. Am J Physiol Heart Circ Physiol 291(4):H2013–H2017

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants HL64035, HL77195, HL62426, AG032009, and T32-007692 and the American Heart Association (0335199 N, 0230038 N). RJB was supported by a United Negro College Fund-MERCK Predoctoral Fellowship and American Physiological Society Porter Physiology Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter P. de Tombe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belin, R.J., Sumandea, M.P., Sievert, G.A. et al. Interventricular differences in myofilament function in experimental congestive heart failure. Pflugers Arch - Eur J Physiol 462, 795–809 (2011). https://doi.org/10.1007/s00424-011-1024-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-1024-4

Keywords

Navigation