Skip to main content
Log in

The sleep relay—the role of the thalamus in central and decentral sleep regulation

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Surprisingly, the concept of sleep, its necessity and function, the mechanisms of action, and its elicitors are far from being completely understood. A key to sleep function is to determine how and when sleep is induced. The aim of this review is to merge the classical concepts of central sleep regulation by the brainstem and hypothalamus with the recent findings on decentral sleep regulation in local neuronal assemblies and sleep regulatory substances that create a scenario in which sleep is both local and use dependent. The interface between these concepts is provided by thalamic cellular and network mechanisms that support rhythmogenesis of sleep-related activity. The brainstem and the hypothalamus centrally set the pace for sleep-related activity throughout the brain. Decentral regulation of the sleep–wake cycle was shown in the cortex, and the homeostat of non-rapid-eye-movement sleep is made up by molecular networks of sleep regulatory substances, allowing individual neurons or small neuronal assemblies to enter sleep-like states. Thalamic neurons provide state-dependent gating of sensory information via their ability to produce different patterns of electrogenic activity during wakefulness and sleep. Many mechanisms of sleep homeostasis or sleep-like states of neuronal assemblies, e.g. by the action of adenosine, can also be found in thalamic neurons, and we summarize cellular and network mechanisms of the thalamus that may elicit non-REM sleep. It is argued that both central and decentral regulators ultimately target the thalamus to induce global sleep-related oscillatory activity. We propose that future studies should integrate ideas of central, decentral, and thalamic sleep generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acuna-Goycolea C, Brenowitz SD, Regehr WG (2008) Active dendritic conductances dynamically regulate GABA release from thalamic interneurons. Neuron 57:420–431

    PubMed  CAS  Google Scholar 

  2. Albrecht U (2011) Circadian rhythms and sleep - the metabolic connection. Pflugers Arch. doi: 10.1007/s00424-011-0986-6

  3. Albrecht D, Quäschling U, Zippel U, Davidowa H (1996) Effects of dopamine on neurons of the lateral geniculate nucleus: an iontophoretic study. Synapse 23:70–78

    PubMed  CAS  Google Scholar 

  4. Antal M, Acuna-Goycolea C, Pressler RT, Blitz DM, Regehr WG (2010) Cholinergic activation of M2 receptors leads to context-dependent modulation of feedforward inhibition in the visual thalamus. PLoS Biol 8:e1000348

    PubMed  Google Scholar 

  5. Bal T, McCormick DA (1993) Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. J Physiol (Lond) 468:669–691

    CAS  Google Scholar 

  6. Bal T, McCormick DA (1996) What stops synchronized thalamocortical oscillations? Neuron 17:297–308

    PubMed  CAS  Google Scholar 

  7. Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep–wake regulation. Progr Neurobiol 73:379–396

    CAS  Google Scholar 

  8. Batini C, Moruzzi G, Palestini M, Rossi G, Zanchetti A (1958) Presistent patterns of wakefulness in the pretrigeminal midpontine preparation. Science 128:30–32

    PubMed  CAS  Google Scholar 

  9. Berger H (1929) Über das Elektrenkephalogramm des Menschen. Arch Psychiat Nervenkr 87:527–570

    Google Scholar 

  10. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    PubMed  CAS  Google Scholar 

  11. Blitz DM, Regehr WG (2005) Timing and specificity of feed-forward inhibition within the LGN. Neuron 45:917–928

    PubMed  CAS  Google Scholar 

  12. Blumberg M, Karlsson K, Seelke A, Mohns E (2005) The ontogeny of mammalian sleep: a response to Frank and Heller (2003). J Sleep Res 14:91–98

    PubMed  Google Scholar 

  13. Blumberg M, Seelke A, Lowen S, Karlsson K (2005) Dynamics of sleep–wake cyclicity in developing rats. PNAS 102:14860–14864

    PubMed  CAS  Google Scholar 

  14. Broicher T, Kanyshkova T, Landgraf P, Rankovic V, Meuth P, Meuth SG, Pape HC, Budde T (2007) Specific expression of low-voltage-activated calcium channel isoforms and splice variants in thalamic local circuit interneurons. Mol Cell Neurosci 36:132–145

    PubMed  CAS  Google Scholar 

  15. Broicher T, Kanyshkova T, Meuth P, Pape HC, Budde T (2008) Correlation of T-channel coding gene expression, IT, and the low threshold Ca2+ spike in the thalamus of a rat model of absence epilepsy. Mol Cell Neurosci 39:384–399

    PubMed  CAS  Google Scholar 

  16. Broicher T, Wettschureck N, Munsch T, Coulon P, Meuth SG, Kanyshkova T, Seidenbecher T, Offermanns S, Pape HC, Budde T (2008) Muscarinic ACh receptor-mediated control of thalamic activity via G(q)/G(11)-family G-proteins. Pflugers Arch 456:1049–1060

    PubMed  CAS  Google Scholar 

  17. Budde T, Biella G, Munsch T, Pape H-C (1997) Lack of regulation by intracellular Ca2+ of the hyperpolarization-activated cation current in rat thalamic neurons. J Physiol (Lond) 503(1):79–85

    CAS  Google Scholar 

  18. Budde T, Coulon P, Pawlowski M, Japes A, Meuth P, Meuth SG, Pape HC (2008) Reciprocal modulation of Ih and ITASK in thalamocortical relay neurons by halothane. Pflugers Arch 456:1061–1073

    PubMed  CAS  Google Scholar 

  19. Budde T, Mager R, Pape H-C (1992) Different types of potassium outward current in relay neurons acutely isolated from the rat lateral geniculate nucleus. Eur J Neurosci 4:708–722

    PubMed  Google Scholar 

  20. Budde T, Sieg F, Braunewell KH, Gundelfinger ED, Pape H-C (2000) Ca2+-induced Ca2+ release supports the relay mode of activity in thalamocortical cells. Neuron 26:483–492

    PubMed  CAS  Google Scholar 

  21. Cain SM, Snutch TP (2010) Contributions of T-type calcium channel isoforms to neuronal firing. Channels 4:475–482

    PubMed  CAS  Google Scholar 

  22. Campagna JA, Miller KW, Forman SA (2003) Mechanisms of actions of inhaled anesthetics. N Engl J Med 348:2110–2124

    PubMed  CAS  Google Scholar 

  23. Coleman C, Baghdoyan H, Lydic R (2006) Dialysis delivery of an adenosine A2A agonist into the pontine reticular formation of C57BL/6J mouse increases pontine acetylcholine release and sleep. J Neurochem 96:1750–1759

    PubMed  CAS  Google Scholar 

  24. Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418

    PubMed  CAS  Google Scholar 

  25. Contreras D, Destexhe A, Sejnowski TJ, Steriade M (1996) Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274:771–774

    PubMed  CAS  Google Scholar 

  26. Contreras D, Steriade M (1996) Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. J Physiol (Lond) 490(1):159–179

    CAS  Google Scholar 

  27. Coulon P, Herr D, Kanyshkova T, Meuth P, Budde T, Pape H-C (2009) Burst discharges in neurons of the thalamic reticular nucleus are shaped by calcium-induced calcium release. Cell Calcium 46:333–346

    PubMed  CAS  Google Scholar 

  28. Coulon P, Kanyshkova T, Broicher T, Munsch T, Wettschureck N, Seidenbecher T, Meuth SG, Offermanns S, Pape H-C, Budde T (2010) Activity modes in thalamocortical relay neurons are modulated by Gq/G11 family G-proteins-serotonergic and glutamatergic signalling. Front Cell Neurosci 4:1–10

    Google Scholar 

  29. Crandall SR, Govindaiah G, Cox CL (2010) Low-threshold Ca2+ current amplifies distal dendritic signaling in thalamic reticular neurons. J Neurosci 30:15419–15429

    PubMed  CAS  Google Scholar 

  30. Crunelli V, Blethyn KL, Cope DW, Hughes SW, Parri HR, Turner JP, Tóth TI, Williams SR (2002) Novel neuronal and astrocytic mechanisms in thalamocortical loop dynamics. Philos Trans R Soc Lond B Biol Sci 357:1675–1693

    PubMed  Google Scholar 

  31. Crunelli V, Cope DW, Hughes SW (2006) Thalamic T-type Ca2+ channels and NREM sleep. Cell Calcium 40:175–190

    PubMed  CAS  Google Scholar 

  32. Crunelli V, Leresche N (1991) A role for GABAB receptors in excitation and inhibition of thalamocortical cells. TINS 14:16–21

    PubMed  CAS  Google Scholar 

  33. Crunelli V, Lırincz ML, Errington AC, Hughes SW, (2011) Activity of cortical and thalamic neurons during the slow (<1 Hz) rhythm in the mouse in vivo. Pflugers Arch. doi: 10.1007/s00424-011-1011-9

  34. Crunelli V, Tóth TI, Cope DW, Blethyn K, Hughes SW (2005) The ‘window’ T-type calcium current in brain dynamics of different behavioural states. J Physiol (Lond) 562:121–129

    CAS  Google Scholar 

  35. Cueni L, Canepari M, Lujan R, Emmenegger Y, Watanabe M, Bond CT, Franken P, Adelman JP, Luthi A (2008) T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat Neurosci 11:683–692

    PubMed  CAS  Google Scholar 

  36. Currò Dossi RC, Nunez A, Steriade M (1992) Electrophysiology of a slow (0.5–4Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. J Physiol (Lond) 447:215–234

    Google Scholar 

  37. Curró Dossi R, Paré D, Steriade M (1992) Various types of inhibitory postsynaptic potentials in anterior thalamic cells are differentially altered by stimulation of laterodorsal tegmental cholinergic nucleus. Neuroscience 47:279–289

    PubMed  Google Scholar 

  38. Daum I, Leonard J, Hehl F (1988) Development of sleep during monotonous stimulation as related to individual differences. Integr Psychol Behav Sci 23:118–124

    CAS  Google Scholar 

  39. De Gennaro L, Ferrara M (2003) Sleep spindles: an overview. Sleep Med Rev 7:423–440

    PubMed  Google Scholar 

  40. De Sarro G, Gareri P, Sinopoli VA, David E, Rotiroti D (1997) Comparative, behavioural and electrocortical effects of tumor necrosis factor-[alpha] and interleukin-1 microinjected into the locus coeruleus of rat. Life Sci 60:555–564

    PubMed  Google Scholar 

  41. De A, Churchill L, Obal F, Simasko SM, Krueger JM (2002) GHRH and IL1[beta] increase cytoplasmic Ca2+ levels in cultured hypothalamic GABAergic neurons. Brain Res 949:209–212

    PubMed  CAS  Google Scholar 

  42. Decrock E, Vinken M, Bol M, D’Herde K, Rogiers V, Vandenabeele P, Krysko DV, Bultynck G, Leybaert L (2011) Calcium and connexin-based intercellular communication, a deadly catch? Cell Calcium. doi:10.1016/j.ceca.2011.05.007

  43. Destexhe A, Babloyantz A, Sejnowski TJ (1993) Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophys J 65:1538–1552

    PubMed  CAS  Google Scholar 

  44. Destexhe A, Bal T, Mccormick DA, Sejnowski TJ (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76:2049–2070

    PubMed  CAS  Google Scholar 

  45. Destexhe A, Contreras D, Sejnowski TJ, Steriade M (1994) A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J Neurophysiol 72:803–818

    PubMed  CAS  Google Scholar 

  46. Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11:114–126

    PubMed  CAS  Google Scholar 

  47. Ebert B, Wafford KA, Deacon S (2006) Treating insomnia: current and investigational pharmacological approaches. Pharmacol Ther 112:612–629

    PubMed  CAS  Google Scholar 

  48. Errington AC, Connelly WM (2011) Dendritic T-type Ca2+ channels: giving a boost to thalamic reticular neurons. J Neurosci 31:5551–5553

    PubMed  CAS  Google Scholar 

  49. Feldberg W, Sherwood SL (1954) Injections of drugs into the lateral ventricle of the cat. J Physiol (Lond) 123:148–167

    CAS  Google Scholar 

  50. Fitzpatrick D, Penny GR, Schmechel DE (1984) Glutamic acid decarboxylase-immunoreactive neurons and terminals in the lateral geniculate nucleus of the cat. J Neurosci 4:1809–1829

    PubMed  CAS  Google Scholar 

  51. Fontanez D, Porter J (2006) Adenosine A1 receptors decrease thalamic excitation of inhibitory and excitatory neurons in the barrel cortex. Neuroscience 137:1177–1184

    PubMed  CAS  Google Scholar 

  52. Francesconi W, Muller CM, Singer W (1988) Cholinergic mechanisms in the reticular control of transmission in the cat lateral geniculate nucleus. J Neurophysiol 59:1690–1718

    PubMed  CAS  Google Scholar 

  53. Frank M, Heller H (2003) The ontogeny of mammalian sleep: a reappraisal of alternative hypotheses. J Sleep Res 12:25–34

    PubMed  Google Scholar 

  54. Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anaethesia. Nature 367:607–614

    PubMed  CAS  Google Scholar 

  55. Franks NP, Lieb WR (1998) Which molecular targets are most relevant to general anaesthesia? Toxicol Lett 100–101:1–8

    PubMed  Google Scholar 

  56. Fuentealba P, Steriade M (2005) The reticular nucleus revisited: intrinsic and network properties of a thalamic pacemaker. Progr Neurobiol 75:125–141

    CAS  Google Scholar 

  57. Gabbott PL, Somogyi J, Stewart MG, Hamori J (1986) A quantitative investigation of the neuronal composition of the rat dorsal lateral geniculate nucleus using GABA-immunocytochemistry. Neuroscience 19:101–111

    PubMed  CAS  Google Scholar 

  58. Gastaut H, Bert J (1961) Electroencephalographic detection of sleep induced by repetitive sensory stimuli. In: Wolstenholme G, O’Connor C (eds) The Nature of Sleep. Churchill, London, pp 260–283

    Google Scholar 

  59. Gerashchenko D, Wisor JP, Burns D, Reh RK, Shiromani PJ, Sakurai T, de la Iglesia HO, Kilduff TS (2008) Identification of a population of sleep-active cerebral cortex neurons. PNAS 105:10227–10232

    PubMed  CAS  Google Scholar 

  60. Graeff RM, Franco L, De Flora A, Lee HC (1998) Cyclic GMP-dependent and -independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. J Biol Chem 273:118–125

    PubMed  CAS  Google Scholar 

  61. Guillery R (1966) A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat. J Comp Neurol 128:21–50

    PubMed  CAS  Google Scholar 

  62. Guillery RW, Feig SL, Lozsadi DA (1998) Paying attention to the thalamic reticular nucleus. Trends Neurosci 21:28–32

    PubMed  CAS  Google Scholar 

  63. Guillery RW, Sherman SM (2002) Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 33:163–175

    PubMed  CAS  Google Scholar 

  64. Haas HL, Lin, JS (2011) Waking with the hypothalamus. Pflugers Arch. doi: 10.1007/s00424-011-0996-4

  65. Halassa MM (2011) Thalamocortical dynamics of sleep: roles of purinergic neuromodulation. Semin Cell Dev Biol 22(2):245–251

    Google Scholar 

  66. Huang Z-L, Urade Y, Hayaishi O (2007) Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr Opin Pharmacol 7:33–38

    PubMed  CAS  Google Scholar 

  67. Huber R, Tononi G, Cirelli C (2007) Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep 30:129–139

    PubMed  Google Scholar 

  68. Hughes SW, Cope DW, Crunelli V (1998) Dynamic clamp study of Ih modulation of burst firing and [delta] oscillations in thalamocortical neurons in vitro. Neuroscience 87:541–550

    PubMed  CAS  Google Scholar 

  69. Huguenard JR, McCormick DA (2007) Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends Neurosci 30:350–356

    PubMed  CAS  Google Scholar 

  70. Huguenard JR, Prince DA (1991) Slow inactivation of a TEA-sensitive K current in acutely isolated rat thalamic relay neurons. J Neurophysiol 66:1316–1328

    PubMed  CAS  Google Scholar 

  71. Jahnsen H, Llinas R (1984) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349:205–226

    PubMed  CAS  Google Scholar 

  72. Joksovic PM, Bayliss DA, Todorovic SM (2005) Different kinetic properties of two T-type Ca2+ currents of rat reticular thalamic neurones and their modulation by enflurane. J Physiol (Lond) 566:125–142

    CAS  Google Scholar 

  73. Joksovic PM, Brimelow BC, Murbartián J, Perez-Reyes E, Todorovic SM (2005) Contrasting anesthetic sensitivities of T-type Ca2+ channels of reticular thalamic neurons and recombinant Cav3.3 channels. Br J Pharmacol 144:59–70

    PubMed  CAS  Google Scholar 

  74. Joksovic PM, Choe WJ, Nelson MT, Orestes P, Brimelow BC, Todorovic SM (2010) Mechanisms of inhibition of T-type calcium current in the reticular thalamic neurons by 1-octanol: implication of the protein kinase C pathway. Mol Pharmacol 77:87–94

    PubMed  CAS  Google Scholar 

  75. Joksovic PM, Todorovic SM (2010) Isoflurane modulates neuronal excitability of the nucleus reticularis thalami in vitro. Ann NY Acad Sci 1199:36–42

    PubMed  CAS  Google Scholar 

  76. Jones EG (1985) The thalamus. Plenum, New York

    Google Scholar 

  77. Jones EG (2002) Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond B Biol Sci 357:1659–1673

    PubMed  Google Scholar 

  78. Jouvet-Mounier D, Astic L, Lacote D (1970) Ontogenesis of the states of sleep in rat, cat, and guinea pig during the first postnatal month. Dev Psychobiol 2:216–239

    PubMed  CAS  Google Scholar 

  79. Kanyshkova T, Broicher T, Meuth S, Pape H-C, Budde T (2011) A-type K+ currents in intralaminar thalamocortical relay neurons. Pflugers Arch 461:545–556

    PubMed  CAS  Google Scholar 

  80. Kanyshkova T, Pawlowski M, Meuth P, Dubé C, Bender RA, Brewster AL, Baumann A, Baram TZ, Pape H-C, Budde T (2009) Postnatal expression pattern of HCN channel isoforms in thalamic neurons: relationship to maturation of thalamocortical oscillations. J Neurosci 29:8847–8857

    PubMed  CAS  Google Scholar 

  81. Kasten MR, Rudy B, Anderson MP (2007) Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels. J Physiol (Lond) 584:565–582

    CAS  Google Scholar 

  82. Kilduff TS, Cauli B, Gerashchenko D (2011) Activation of cortical interneurons during sleep: an anatomical link to homeostatic sleep regulation? Trends Neurosci 34:10–19

    PubMed  CAS  Google Scholar 

  83. Kim U, Bal T, McCormick DA (1995) Spindle waves are propagating sychronized oscillations in the ferret LGNd in vitro. J Nuerophysiol 74:1301–1323

    CAS  Google Scholar 

  84. Koesling D, Humbert P, Schultz G (1995) The NO receptor: characterization and regulation of soluble guanylyl cyclase. In: Vincent SR (ed) Nitric oxide in the nervous system. Academic, London, pp 43–50

    Google Scholar 

  85. Krueger J, Churchill L, Rector D (2009) Cytokines and other neuromodulators. In: Stickgold R, Walker M (eds) The neuroscience of sleep. Elsevier, Oxford

    Google Scholar 

  86. Krueger JM, Rector DM, Roy S, Van Dongen HPA, Belenky G, Panksepp J (2008) Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci 9:910–919

    PubMed  CAS  Google Scholar 

  87. Landgraf D, Shostak A, Oster H (2011) Clock genes and sleep. Pflugers Arch. doi: 10.1007/s00424-011-1003-9

  88. Landisman CE, Connors BW (2005) Long-term modulation of electrical synapses in the mammalian thalamus. Science 310:1809–1813

    PubMed  CAS  Google Scholar 

  89. Landisman CE, Long MA, Beierlein M, Deans MR, Paul DL, Connors BW (2002) Electrical synapses in the thalamic reticular nucleus. J Neurosci 22:1002–1009

    PubMed  CAS  Google Scholar 

  90. Lee SH, Govindaiah G, Cox CL (2007) Heterogeneity of firing properties among rat thalamic reticular nucleus neurons. J Physiol 582:195–208

    PubMed  CAS  Google Scholar 

  91. Llinas R, Ribary U (1993) Coherent 40-Hz oscillation characterizes dream state in humans. PNAS 90:2078–2081

    PubMed  CAS  Google Scholar 

  92. Llinas RR, Steriade M (2006) Bursting of thalamic neurons and states of vigilance. J Neurophysiol 95:3297–3308

    PubMed  Google Scholar 

  93. Ludwig A, Budde T, Stieber J, Moosmang S, Wahl C, Holthoff K, Langebartels A, Wotjak C, Munsch T, Zong X, Feil S, Feil R, Lancel M, Chien KR, Konnerth A, Pape HC, Biel M, Hofmann F (2003) Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J 22:216–224

    PubMed  CAS  Google Scholar 

  94. Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M (1998) A family of hyperpolarization-activated mammalian cation channels. Nature 393:587–591

    PubMed  CAS  Google Scholar 

  95. Lüthi A, McCormick DA (1999) Modulation of a pacemaker current through Ca2+-induced stimulation of cAMP production. Nat Neurosci 2:634–641

    PubMed  Google Scholar 

  96. Magni F, Moruzzi G, Rossi G, Zanchetti A (1959) EEG arousal following inactivation of the lower brain stem by selective injection of barbiturate into the vertebral circulation. Arch Ital Biol 97:33–46

    Google Scholar 

  97. Mancia M, Margnelli M, Mariotti M, Spreafico R, Broggi G (1974) Brain stem-thalamus reciprocal influences in the cat. Brain Res 69:297–314

    PubMed  CAS  Google Scholar 

  98. Mancia M, Meulders M, Santibanez H (1959) Synchronisation de l’électroencéphalogramme provoquée par la stimulation visuelle répétitive chez le chat “médiopontin prétrigéminal”. Arch Int Physiol Biochem 67:661–670

    CAS  Google Scholar 

  99. Manfridi A, Brambilla D, Bianchi S, Mariotti M, Opp MR, Imeri L (2003) Interleukin-1β enhances non-rapid eye movement sleep when microinjected into the dorsal raphe nucleus and inhibits serotonergic neurons in vitro. Eur J Neurosci 18:1041–1049

    PubMed  Google Scholar 

  100. Mares P, Maresová D, Trojan S, Fischer J (1982) Ontogenetic development of rhythmic thalamo-cortical phenomena in the rat. Brain Res Bull 8:765–769

    PubMed  CAS  Google Scholar 

  101. Marks GA, Birabil CG (1998) Enhancement of rapid eye movement sleep in the rat by cholinergic and adenosinergic agonists infused into the pontine reticular formation. Neuroscience 86:29–37

    PubMed  CAS  Google Scholar 

  102. Marshall L, Born J (2007) The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn Sci 11:442–450

    PubMed  Google Scholar 

  103. Martinowich K, Schloesser R, Jimenez D, Weinberger D, Lu B (2011) Activity-dependent brain-derived neurotrophic factor expression regulates cortistatin-interneurons and sleep behavior. Mol Brain 4:11

    PubMed  CAS  Google Scholar 

  104. Matos G, Andersen ML, do Valle AC, Tufik S (2010) The relationship between sleep and epilepsy: evidence from clinical trials and animal models. J Neurol Sci 295:1–7

    PubMed  Google Scholar 

  105. McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39:337–388

    PubMed  CAS  Google Scholar 

  106. McCormick DA (1992) Cellular mechanisms underlying cholinergic and noradrenergic modulation of neuronal firing mode in the cat and guinea pig dorsal lateral geniculate nucleus. J Neurosci 12:278–289

    PubMed  CAS  Google Scholar 

  107. McCormick DA, Bal T (1994) Sensory gating mechanisms of the thalamus. Curr Opin Neurobiol 4:550–556

    PubMed  CAS  Google Scholar 

  108. McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20:185–215

    PubMed  CAS  Google Scholar 

  109. McCormick DA, Pape H-C (1988) Acetylcholine inhibits identified interneurons in the cat lateral geniculate nucleus. Nature 334:246–248

    PubMed  CAS  Google Scholar 

  110. McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol (Lond) 431:291–318

    CAS  Google Scholar 

  111. McCormick DA, Pape HC (1990) Noradrenergic and serotonergic modulation of a hyperpolarization-activated cation current in thalamic relay neurones. J Physiol (Lond) 431:319–342

    CAS  Google Scholar 

  112. McGinty D, Sterman M (1968) Sleep suppression after basal forebrain lesions in the cat. Science 160:1253–1255

    PubMed  CAS  Google Scholar 

  113. Meuth SG, Kanyshkova T, Meuth P, Landgraf P, Munsch T, Ludwig A, Hofmann F, Pape HC, Budde T (2006) Membrane resting potential of thalamocortical relay neurons is shaped by the interaction among TASK3 and HCN2 channels. J Neurophysiol 96:1517–1529

    PubMed  CAS  Google Scholar 

  114. Mignot E, Lin L (2009) Narcolepsy. In: Stickgold R, Walker M (eds) The Neuroscience of Sleep. Elsevier, pp 270–277

  115. Mihic SJ, Ye Q, Wick MJ, Koltchine VV, Krasowski MD, Finn SE, Mascia MP, Valenzuela CF, Hanson KK, Greenblatt EP, Harris RA, Harrison NL (1997) Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature 389:385–389

    PubMed  CAS  Google Scholar 

  116. Montero V, Singer W (1985) Ultrastructural identification of somata and neural processes immunoreactive to antibodies against glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the cat. Exp Brain Res 59:151–165

    PubMed  CAS  Google Scholar 

  117. Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11:113–133

    PubMed  Google Scholar 

  118. Moruzzi G (1972) The sleep–waking cycle. Ergeb Physiol 64:1–165

    PubMed  CAS  Google Scholar 

  119. Moruzzi G, Magoun H (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    PubMed  CAS  Google Scholar 

  120. Mullington J (2009) Endocrine function during sleep and sleep deprivation. In: Stickgold R, Walker M (eds) The Neuroscience of Sleep. Elsevier, pp 209–212

  121. Mullington J (2009) Immune function during sleep and sleep deprivation. In: Stickgold R, Walker M (eds) The Neuroscience of Sleep. Elsevier, pp 213–217

  122. Munsch T, Budde T, Pape HC (1997) Voltage-activated intracellular calcium transients in thalamic relay cells and interneurons. Neuroreport 8:2411–2418

    PubMed  CAS  Google Scholar 

  123. Munsch T, Yanagawa Y, Obata K, Pape HC (2005) Dopaminergic control of local interneuron activity in the thalamus. Eur J Neurosci 21:290–294

    PubMed  Google Scholar 

  124. Nauta W (1946) Hypothalamic regulation of sleep in rats; an experimental study. J Neurophysiol 9:285–316

    PubMed  CAS  Google Scholar 

  125. Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M (2002) The sedative component of anesthesia is mediated by GABAA receptors in an endogenous sleep pathway. Nat Neurosci 5:979–984

    PubMed  CAS  Google Scholar 

  126. Nishino S (2009) Cataplexy. In: Stickgold R, Walker M (eds) The Neuroscience of Sleep. Elsevier, pp 278–284

  127. Obal FJ, Krueger J (2003) Biochemical regulation of non-rapid-eye-movement sleep. Front Biosci 8:d520–d550

    PubMed  CAS  Google Scholar 

  128. Ohara PT, Lieberman AR (1985) The thalamic reticular nucleus of the adult rat: experimental anatomical studies. J Neurocytol 14:365–411

    PubMed  CAS  Google Scholar 

  129. Ohara PT, Lieberman AR, Hunt SP, Wu JY (1983) Neural elements containing glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the rat; Immunohistochemical studies by light and electron microscopy. Neuroscience 8:189–211

    PubMed  CAS  Google Scholar 

  130. Oishi Y, Huang Z-L, Fredholm BB, Urade Y, Hayaishi O (2008) Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. PNAS 105:19992–19997

    PubMed  CAS  Google Scholar 

  131. Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3:591–605

    PubMed  CAS  Google Scholar 

  132. Pape H-C (1992) Adenosine promotes burst activity in guinea-pig geniculocortical neurones through two different ionic mechanisms. J Physiol (Lond) 447:729–753

    CAS  Google Scholar 

  133. Pape HC (1996) Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327

    PubMed  CAS  Google Scholar 

  134. Pape H-C, Budde T, Mager R, Kisvarday Z (1994) Prevention of Ca2+-mediated action potentials in GABAergic local circuit neurons of the thalamus by a transient K+ current. J Physiol (Lond) 478(3):403–422

    CAS  Google Scholar 

  135. Pape H-C, Mager R (1992) Nitric oxide controls oscillatory activity in thalamocortical neurons. Neuron 9:441–448

    PubMed  CAS  Google Scholar 

  136. Pape HC, McCormick DA (1989) Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature 340:715–718

    PubMed  CAS  Google Scholar 

  137. Pape HC, McCormick DA (1995) Electrophysiological and pharmacological properties of interneurons in the cat dorsal lateral geniculate nucleus. Neuroscience 68:1105–1125

    PubMed  CAS  Google Scholar 

  138. Pape HC, Munsch T, Budde T (2004) Novel vistas of calcium-mediated signalling in the thalamus. Eur J Physiol (Pflügers Arch) 448:131–138

    CAS  Google Scholar 

  139. Parri HR, Crunelli V (2001) Pacemaker calcium oscillations in thalamic astrocytes in situ. Neuroreport 12:3897–3900

    PubMed  CAS  Google Scholar 

  140. Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 4:803–812

    PubMed  CAS  Google Scholar 

  141. Perez Velazquez JL, Carlen PL (1996) Development of firing patterns and electrical properties in neurons of the rat ventrobasal thalamus. Brain Res 91:164–170

    CAS  Google Scholar 

  142. Pinault D (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res Brain Res Rev 46:1–31

    PubMed  Google Scholar 

  143. Pinault D, Deschênes M (1998) Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: a three-dimensional, graphic, and morphometric analysis. J Comp Neurol 391:180–203

    PubMed  CAS  Google Scholar 

  144. Porkka-Heiskanen T (2011) Methylxanthines and sleep. In: Fredholm BB (ed) Methylxanthines, handbook of experimental pharmacology. Springer, Berlin, Heidelberg, pp 331–348

    Google Scholar 

  145. Porkka-Heiskanen T, Alanko L, Kalinchuk A, Stenberg D (2002) Adenosine and sleep. Sleep Med Rev 6:321–332

    PubMed  Google Scholar 

  146. Porkka-Heiskanen T, Kalinchuk A (2011) Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 15:123–135

    PubMed  Google Scholar 

  147. Puizillout J, Ternaux J, Foutz A, Dell P (1973) Slow wave sleep with phasic discharges. Triggering by vago-aortic stimulation. Rev Electroencephalogr Neurophysiol Clin 3(21–37):143

    Google Scholar 

  148. Rainnie DG, Grunze HCR, McCarley RW, Greene RW (1994) Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. Science 263(689–692):144

    Google Scholar 

  149. Rechtschaffen A, Bergmann B (2002) Sleep deprivation in the rat: an update of the 1989 paper. Sleep 25:18–24

    PubMed  Google Scholar 

  150. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subject. U.S. National Institute of Neurological Diseases and Blindness, Neurological Information Network, Bethesda, MD

  151. Reinoso-Suárez F, De Andrés I, Garzón M (2011) Functional anatomy of the sleep–wakefulness cycle: wakefulness. Adv Anat Embryol Cell Biol 208(1–128):147

    Google Scholar 

  152. Richter TA, Kolaj M, Renaud LP (2005) Low voltage-activated Ca2+ channels are coupled to Ca2+-induced Ca2+ release in rat thalamic midline neurons. J Neurosci 25(8267–8271):148

    Google Scholar 

  153. Ries CR, Puil E (1999) Ionic mechanism of isoflurane’s actions on thalamocortical neurons. J Neurophysiol 81:1802–1809

    PubMed  CAS  Google Scholar 

  154. Ries CR, Puil E (1999) Mechanism of anesthesia revealed by shunting actions of isoflurane on thalamocortical neurons. J Neurophysiol 81:1795–1801

    PubMed  CAS  Google Scholar 

  155. Rosenberg PA, Li Y, Le M, Zhang Y (2000) Nitric oxide-stimulated increase in extracellular adenosine accumulation in rat forebrain neurons in culture is associated with atp hydrolysis and inhibition of adenosine kinase activity. J Neurosci 20:6294–6301

    PubMed  CAS  Google Scholar 

  156. Sallanon M, Denoyer M, Kitahama K, Aubert C, Gay N, Jouvet M (1989) Long-lasting insomnia induced by preoptic neuron lesions and its transient reversal by muscimol injection into the posterior hypothalamus in the cat. Neuroscience 32:669–683

    PubMed  CAS  Google Scholar 

  157. Salt TE (2002) Glutamate receptor functions in sensory relay in the thalamus. Philos Trans R Soc Lond B Biol Sci 357:1759–1766

    PubMed  CAS  Google Scholar 

  158. Seelke A, Blumberg M (2008) The microstructure of active and quiet sleep as cortical delta activity emerges in infant rats. Sleep 31:691–699

    PubMed  Google Scholar 

  159. Selbach O, Haas HL (2006) Hypocretins: the timing of sleep and waking. Chronobiol Int 23(1–2):63–70

    Google Scholar 

  160. Shaw PJ, Salt TE (1997) Modulation of sensory and excitatory amino acid responses by nitric oxide donors and glutathione in the ventrobasal thalamus of the rat. Eur J Neurosci 9:1507–1513

    PubMed  CAS  Google Scholar 

  161. Sherman SM (2001) Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 24:122–126

    PubMed  CAS  Google Scholar 

  162. Sherman SM (2007) The thalamus is more than just a relay. Curr Opin Neurobiol 17:417–422

    PubMed  CAS  Google Scholar 

  163. Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76(3):1367–1395

    Google Scholar 

  164. Sherman SM, Guillery RW (2006) Exploring the thalamus and its role in cortical function. MIT Press, Cambridge

    Google Scholar 

  165. Sieg F, Obst K, Gorba T, Riederer B, Pape HC, Wahle P (1998) Postnatal expression pattern of calcium-binding proteins in organotypic thalamic cultures and in the dorsal thalamus in vivo. Brain Res 110:83–95

    CAS  Google Scholar 

  166. Singer W (1977) Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. Physiol Rev 57:386–420

    PubMed  CAS  Google Scholar 

  167. Soltesz I, Lightowler S, Leresche N, Jassik-Gerschenfeld D, Pollard CE, Crunelli V (1991) Two inward currents and the transformation of low-frequency oscillations of rat and cat thalamocortical cells. J Physiol (Lond) 441:175–197

    CAS  Google Scholar 

  168. Spreafico R, Battaglia G, Frassoni C (1991) The reticular thalamic nucleus (RTN) of the rat: cytoarchitectural, Golgi, immunocytochemical, and horseradish peroxidase study. J Comp Neurol 304:478–490

    PubMed  CAS  Google Scholar 

  169. Spreafico R, de Curtis M, Frassoni C, Avanzini G (1988) Electrophysiological characteristics of morphologically identified reticular thalamic neurons from rat slices. Neuroscience 27:629–638

    PubMed  CAS  Google Scholar 

  170. Stenberg D (2007) Cell Mol Life Sci 64:1187–1204

    PubMed  CAS  Google Scholar 

  171. Steriade M (2006) Grouping of brain rhythms in corticothalamic systems. Neuroscience 137:1087–1106

    PubMed  CAS  Google Scholar 

  172. Steriade M, Curro Dossi RC, Nunez A (1991) Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. J Neurosci 11:3200–3217

    PubMed  CAS  Google Scholar 

  173. Steriade M, Domich L, Oakson G (1986) Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance. J Neurosci 6:68–81

    PubMed  CAS  Google Scholar 

  174. Steriade M, Domich L, Oakson G, Deschenes M (1987) The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol 57:260–273

    PubMed  CAS  Google Scholar 

  175. Steriade M, Jones EG, McCormick DA (1997) Thalamus. Elsevier, Amsterdam

    Google Scholar 

  176. Steriade M, McCarley R (1990) Brainstem control of wakefulness and sleep. Plenum, New York

    Google Scholar 

  177. Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685

    PubMed  CAS  Google Scholar 

  178. Steriade M, Pare D, Hu B, Deschenes M (1990) The visual thalamocortical system and its modulation by the brain stem core. Prog Sens Physiol 10:1–124

    Google Scholar 

  179. Stocker M, Pedarzani P (2000) Differential distribution of three Ca2+-activated K+ channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol Cell Neurosci 15:476–493

    PubMed  CAS  Google Scholar 

  180. Szymusiak R (2009) Thermoregulation during sleep and sleep deprivation. In: Stickgold R, Walker M (eds) The Neuroscience of Sleep. Elsevier, pp 218–222

  181. Terman D, Bose A, Kopell N (1996) Functional reorganization in thalamocortical networks: transition between spindling and delta sleep rhythms. PNAS 93:15417–15422

    PubMed  CAS  Google Scholar 

  182. Todorovic SM, Lingle CJ (1998) Pharmacological properties of T-type Ca2+ current in adult rat sensory neurons: effects of anticonvulsant and anesthetic agents. J Neurophysiol 79:240–252

    PubMed  CAS  Google Scholar 

  183. Tóth TI, Crunelli V (1997) Simulation of intermittent action potential firing in thalamocortical neurons. Neuroreport 8:2889–2892

    PubMed  Google Scholar 

  184. Tscherter A, David F, Ivanova T, Deleuze C, Renger JJ, Uebele VN, Shin HS, Bal T, Leresche N, Lambert RC (2011) Minimal alterations in T-type calcium channel gating markedly modify physiological firing dynamics. J Physiol (Lond) 589:1707–1724

    CAS  Google Scholar 

  185. Van Dort CJ, Baghdoyan HA, Lydic R (2009) Adenosine A1 and A2A receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal. J Neurosci 29:871–881

    PubMed  Google Scholar 

  186. Veasey S (2009) Sleep apnea. In: Stickgold R, Walker M (eds) The Neuroscience of Sleep. Elsevier, pp 263–269

  187. Villablanca J (2004) Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. J Sleep Res 13:179–208

    PubMed  Google Scholar 

  188. Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011) Local sleep in awake rats. Nature 472:443–447

    PubMed  CAS  Google Scholar 

  189. Wan X, Mathers DA, Puil E (2003) Pentobarbital modulates intrinsic and GABA-receptor conductances in thalamocortical inhibition. Neuroscience 121:947–958

    PubMed  CAS  Google Scholar 

  190. Ward C (2011) On doing nothing: descriptions of sleep, fatigue, and motivation in encephalitis lethargica. Mov Disord. doi:10.1002/mds.23545, Epub ahead of print

  191. Wurtz RH, Sommer MA, Cavanaugh J (2005) Drivers from the deep: the contribution of collicular input to thalamocortical processing. Prog Brain Res 149:207–225

    PubMed  Google Scholar 

  192. Yang S, Cox CL (2007) Modulation of inhibitory activity by nitric oxide in the thalamus. J Neurophysiol 97:3386–3395

    PubMed  CAS  Google Scholar 

  193. Yang S, Cox CL (2008) Excitatory and anti-oscillatory actions of nitric oxide in thalamus. J Physiol (Lond) 586:3617–3628

    CAS  Google Scholar 

  194. Ying SW, Goldstein PA (2005) Propofol suppresses synaptic responsiveness of somatosensory relay neurons to excitatory input by potentiating GABA(A) receptor chloride channels. Mol Pain 1:2

    PubMed  Google Scholar 

  195. Zeitlhofer J, Gruber G, Anderer P, Asenbaum S, Schimicek P, Saletu B (1997) Topographic distribution of sleep spindles in young healthy subjects. J Sleep Res 6:149–155

    PubMed  CAS  Google Scholar 

  196. Zhao Y, Kerscher N, Eysel U, Funke K (2002) D1 and D2 receptor-mediated dopaminergic modulation of visual responses in cat dorsal lateral geniculate nucleus. J Physiol (Lond) 539:223–238

    CAS  Google Scholar 

  197. Zhu JJ, Uhlrich DJ, Lytton WW (1999) Burst firing in identified rat geniculate interneurons. Neuroscience 91:1445–1460

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ingrid Winkelhues for the assistance in the preparation of Fig. 1 and the reviewers for their helpful comments. The work reported of herein was enabled by grants to HCP (Max-Planck-Research Award 2007), TB (Interdisciplinary Centre for Clinical Research Münster, IZKF, Bud3/010/10; German Research Foundation, DFG, BU1019/8-1/9-2), and PC (Innovative Medical Research of the Medical Faculty Münster, CO 2 1 08 03 and CO 1 2 10 08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Coulon.

Additional information

This article is published as part of the Special Issue on Sleep.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coulon, P., Budde, T. & Pape, HC. The sleep relay—the role of the thalamus in central and decentral sleep regulation. Pflugers Arch - Eur J Physiol 463, 53–71 (2012). https://doi.org/10.1007/s00424-011-1014-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-1014-6

Keywords

Navigation