Skip to main content
Log in

Fluvastatin modulates renal water reabsorption in vivo through increased AQP2 availability at the apical plasma membrane of collecting duct cells

  • Transport Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

X-linked nephrogenic diabetes insipidus (XNDI), a severe pathological condition characterized by greatly impaired urine-concentrating ability of the kidney, is caused by inactivating mutations in the V2 vasopressin receptor (V2R) gene. The lack of functional V2Rs prevents vasopressin-induced shuttling of aquaporin-2 (AQP2) water channels to the apical plasma membrane of kidney collecting duct principal cells, thus promoting water reabsorption from urine to the interstitium. At present, no specific pharmacological therapy exists for the treatment of XNDI. We have previously reported that the cholesterol-lowering drug lovastatin increases AQP2 membrane expression in renal cells in vitro. Here we report the novel finding that fluvastatin, another member of the statins family, greatly increases kidney water reabsorption in vivo in mice in a vasopressin-independent fashion. Consistent with this observation, fluvastatin is able to increase AQP2 membrane expression in the collecting duct of treated mice. Additional in vivo and in vitro experiments indicate that these effects of fluvastatin are most likely caused by fluvastatin-dependent changes in the prenylation status of key proteins regulating AQP2 trafficking in collecting duct cells. We identified members of the Rho and Rab families of proteins as possible candidates whose reduced prenylation might result in the accumulation of AQP2 at the plasma membrane. In conclusion, these results strongly suggest that fluvastatin, or other drugs of the statin family, may prove useful in the therapy of XNDI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

XNDI:

X-linked nephrogenic diabetes insipidus

V2R:

V2 vasopressin receptor

AQP2:

Aquaporin-2

AVP:

Arginine vasopressin

TAL:

Thick ascending limb of the loop of Henle

GGPP:

Geranylgeranyl pyrophosphate

References

  1. (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344:1383–1389

  2. (1998) Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. N Engl J Med 339:1349–1357

  3. Ares GR, Ortiz PA (2010) Constitutive endocytosis and recycling of NKCC2 in rat thick ascending limbs. Am J Physiol Renal Physiol 299:F1193–F1202

    Article  PubMed  CAS  Google Scholar 

  4. Barile M, Pisitkun T, Yu MJ, Chou CL, Verbalis MJ, Shen RF, Knepper MA (2005) Large scale protein identification in intracellular aquaporin-2 vesicles from renal inner medullary collecting duct. Mol Cell Proteomics 4:1095–1106

    Article  PubMed  CAS  Google Scholar 

  5. Bichet DG (1998) Nephrogenic diabetes insipidus. Am J Med 105:431–442

    Article  PubMed  CAS  Google Scholar 

  6. Bichet DG (2008) Vasopressin receptor mutations in nephrogenic diabetes insipidus. Semin Nephrol 28:245–251

    Article  PubMed  CAS  Google Scholar 

  7. Bichet DG, Fujiwara TM (1998) Diversity of nephrogenic diabetes insipidus mutations and importance of early recognition and treatment. Clin Exp Nephrol 2:253–263

    Article  CAS  Google Scholar 

  8. Bonetti PO, Lerman LO, Napoli C, Lerman A (2003) Statin effects beyond lipid lowering—are they clinically relevant? Eur Heart J 24:225–248

    Article  PubMed  CAS  Google Scholar 

  9. Bouley R, Hasler U, Lu HA, Nunes P, Brown D (2008) Bypassing vasopressin receptor signaling pathways in nephrogenic diabetes insipidus. Semin Nephrol 28:266–278

    Article  PubMed  CAS  Google Scholar 

  10. Brown D (2003) The ins and outs of aquaporin-2 trafficking. Am J Physiol Renal Physiol 284:F893–F901

    PubMed  CAS  Google Scholar 

  11. Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack B, Zerial M (1992) The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70:715–728

    Article  PubMed  CAS  Google Scholar 

  12. Casey PJ, Seabra MC (1996) Protein prenyltransferases. J Biol Chem 271:5289–5292

    Article  PubMed  CAS  Google Scholar 

  13. Castrop H, Schnermann J (2008) Isoforms of renal Na-K-2Cl cotransporter NKCC2: expression and functional significance. Am J Physiol Renal Physiol 295:F859–F866

    Article  PubMed  CAS  Google Scholar 

  14. Chen W, Pendyala S, Natarajan V, Garcia JG, Jacobson JR (2008) Endothelial cell barrier protection by simvastatin: GTPase regulation and NADPH oxidase inhibition. Am J Physiol Lung Cell Mol Physiol 295:L575–L583

    Article  PubMed  CAS  Google Scholar 

  15. Chong PH, Seeger JD, Franklin C (2001) Clinically relevant differences between the statins: implications for therapeutic selection. Am J Med 111:390–400

    Article  PubMed  CAS  Google Scholar 

  16. Cicha I, Schneiderhan-Marra N, Yilmaz A, Garlichs CD, Goppelt-Struebe M (2004) Monitoring the cellular effects of HMG-CoA reductase inhibitors in vitro and ex vivo. Arterioscler Thromb Vasc Biol 24:2046–2050

    Article  PubMed  CAS  Google Scholar 

  17. del Real G, Jimenez-Baranda S, Mira E, Lacalle RA, Lucas P, Gomez-Mouton C, Alegret M, Pena JM, Rodriguez-Zapata M, Alvarez-Mon M, Martinez AC, Manes S (2004) Statins inhibit HIV-1 infection by down-regulating Rho activity. J Exp Med 200:541–547

    Article  PubMed  Google Scholar 

  18. Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rutten H, Fichtlscherer S, Martin H, Zeiher AM (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108:391–397

    PubMed  CAS  Google Scholar 

  19. Flemmer AW, Gimenez I, Dowd BF, Darman RB, Forbush B (2002) Activation of the Na-K-Cl cotransporter NKCC1 detected with a phospho-specific antibody. J Biol Chem 277:37551–37558

    Article  PubMed  CAS  Google Scholar 

  20. Gimenez I, Forbush B (2003) Short-term stimulation of the renal Na-K-Cl cotransporter (NKCC2) by vasopressin involves phosphorylation and membrane translocation of the protein. J Biol Chem 278:26946–26951

    Article  PubMed  CAS  Google Scholar 

  21. Gorvel JP, Chavrier P, Zerial M, Gruenberg J (1991) rab5 controls early endosome fusion in vitro. Cell 64:915–925

    Article  PubMed  CAS  Google Scholar 

  22. Greenwood J, Steinman L, Zamvil SS (2006) Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol 6:358–370

    Article  PubMed  CAS  Google Scholar 

  23. Hardcastle IR, Rowlands MG, Barber AM, Grimshaw RM, Mohan MK, Nutley BP, Jarman M (1999) Inhibition of protein prenylation by metabolites of limonene. Biochem Pharmacol 57:801–809

    Article  PubMed  CAS  Google Scholar 

  24. Henn V, Edemir B, Stefan E, Wiesner B, Lorenz D, Theilig F, Schmitt R, Vossebein L, Tamma G, Beyermann M, Krause E, Herberg FW, Valenti G, Bachmann S, Rosenthal W, Klussmann E (2004) Identification of a novel A-kinase anchoring protein 18 isoform and evidence for its role in the vasopressin-induced aquaporin-2 shuttle in renal principal cells. J Biol Chem 279:26654–26665

    Article  PubMed  CAS  Google Scholar 

  25. Holtzman EJ, Ausiello DA (1994) Nephrogenic diabetes insipidus: causes revealed. Hosp Pract (Off Ed) 29:89–93, 97–8, 103–104

  26. Iolascon A, Aglio V, Tamma G, D'Apolito M, Addabbo F, Procino G, Simonetti MC, Montini G, Gesualdo L, Debler EW, Svelto M, Valenti G (2007) Characterization of two novel missense mutations in the AQP2 gene causing nephrogenic diabetes insipidus. Nephron Physiol 105:p33–p41

    Article  PubMed  CAS  Google Scholar 

  27. Ivessa NE, Gravotta D, De Lemos-Chiarandini C, Kreibich G (1997) Functional protein prenylation is required for the brefeldin A-dependent retrograde transport from the Golgi apparatus to the endoplasmic reticulum. J Biol Chem 272:20828–20834

    Article  PubMed  CAS  Google Scholar 

  28. Khundmiri SJ, Bertorello AM, Delamere NA, Lederer ED (2004) Clathrin-mediated endocytosis of Na+, K + −ATPase in response to parathyroid hormone requires ERK-dependent phosphorylation of Ser-11 within the alpha1-subunit. J Biol Chem 279:17418–17427

    Article  PubMed  CAS  Google Scholar 

  29. Khwaja A, Sharpe CC, Noor M, Hendry BM (2006) The role of geranylgeranylated proteins in human mesangial cell proliferation. Kidney Int 70:1296–1304

    Article  PubMed  CAS  Google Scholar 

  30. Kita T, Brown MS, Goldstein JL (1980) Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in livers of mice treated with mevinolin, a competitive inhibitor of the reductase. J Clin Invest 66:1094–1100

    Article  PubMed  CAS  Google Scholar 

  31. Klussmann E, Tamma G, Lorenz D, Wiesner B, Maric K, Hofmann F, Aktories K, Valenti G, Rosenthal W (2001) An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 276:20451–20457

    Article  PubMed  CAS  Google Scholar 

  32. Knoers N, Monnens LA (1992) Nephrogenic diabetes insipidus: clinical symptoms, pathogenesis, genetics and treatment. Pediatr Nephrol 6:476–482

    Article  PubMed  CAS  Google Scholar 

  33. Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG (2007) Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nature reviews. Drug Discov 6:541–555

    Article  CAS  Google Scholar 

  34. Leonard S, Beck L, Sinensky M (1990) Inhibition of isoprenoid biosynthesis and the post-translational modification of pro-p21. J Biol Chem 265:5157–5160

    PubMed  CAS  Google Scholar 

  35. Li JH, Chou CL, Li B, Gavrilova O, Eisner C, Schnermann J, Anderson SA, Deng CX, Knepper MA, Wess J (2009) A selective EP4 PGE2 receptor agonist alleviates disease in a new mouse model of X-linked nephrogenic diabetes insipidus. J Clin Invest 119:3115–3126

    Article  CAS  Google Scholar 

  36. McKenney JM (2003) Pharmacologic characteristics of statins. Clin Cardiol 26:III32–III38

    Article  PubMed  Google Scholar 

  37. Morgenthaler NG, Struck J, Alonso C, Bergmann A (2006) Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem 52:112–119

    Article  PubMed  CAS  Google Scholar 

  38. Morgenthaler NG, Struck J, Jochberger S, Dunser MW (2008) Copeptin: clinical use of a new biomarker. Trends Endocrinol Metab 19:43–49

    Article  PubMed  CAS  Google Scholar 

  39. Nedvetsky PI, Tamma G, Beulshausen S, Valenti G, Rosenthal W, Klussmann E (2009) Regulation of aquaporin-2 trafficking. Handb Exp Pharmacol (190):133–157

  40. Ni W, Egashira K, Kataoka C, Kitamoto S, Koyanagi M, Inoue S, Takeshita A (2001) Antiinflammatory and antiarteriosclerotic actions of HMG-CoA reductase inhibitors in a rat model of chronic inhibition of nitric oxide synthesis. Circ Res 89:415–421

    Article  PubMed  CAS  Google Scholar 

  41. Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA (1995) Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci USA 92:1013–1017

    Article  PubMed  CAS  Google Scholar 

  42. Nielsen S, Kwon TH, Frokiaer J, Agre P (2007) Regulation and dysregulation of aquaporins in water balance disorders. J Intern Med 261:53–64

    Article  PubMed  CAS  Google Scholar 

  43. Noda Y, Horikawa S, Kanda E, Yamashita M, Meng H, Eto K, Li Y, Kuwahara M, Hirai K, Pack C, Kinjo M, Okabe S, Sasaki S (2008) Reciprocal interaction with G-actin and tropomyosin is essential for aquaporin-2 trafficking. J Cell Biol 182:587–601

    Article  PubMed  CAS  Google Scholar 

  44. Oksche A, Rosenthal W (1998) The molecular basis of nephrogenic diabetes insipidus. J Mol Med 76:326–337

    Article  PubMed  CAS  Google Scholar 

  45. Ostrowski SM, Wilkinson BL, Golde TE, Landreth G (2007) Statins reduce amyloid-beta production through inhibition of protein isoprenylation. J Biol Chem 282:26832–26844

    Article  PubMed  CAS  Google Scholar 

  46. Overmeyer JH, Maltese WA (1992) Isoprenoid requirement for intracellular transport and processing of murine leukemia virus envelope protein. J Biol Chem 267:22686–22692

    PubMed  CAS  Google Scholar 

  47. Paulsen L, Holm C, Bech JN, Starklint J, Pedersen EB (2008) Effects of statins on renal sodium and water handling: acute and short-term effects of atorvastatin on renal haemodynamics, tubular function, vasoactive hormones, blood pressure and pulse rate in healthy, normocholesterolemic humans. Nephrol Dial Transplant 23:1556–1561

    Article  PubMed  CAS  Google Scholar 

  48. Procino G, Barbieri C, Tamma G, De Benedictis L, Pessin JE, Svelto M, Valenti G (2008) AQP2 exocytosis in the renal collecting duct—involvement of SNARE isoforms and the regulatory role of Munc18b. J Cell Sci 121:2097–2106

    Article  PubMed  CAS  Google Scholar 

  49. Procino G, Barbieri C, Carmosino M, Rizzo F, Valenti G, Svelto M (2010) Lovastatin-induced cholesterol depletion affects both apical sorting and endocytosis of aquaporin-2 in renal cells. Am J Physiol Renal Physiol 298:F266–F278

    Article  PubMed  CAS  Google Scholar 

  50. Rikitake Y, Liao JK (2005) Rho GTPases, statins, and nitric oxide. Circ Res 97:1232–1235

    Article  PubMed  CAS  Google Scholar 

  51. Ritter M, Ravasio A, Jakab M, Chwatal S, Furst J, Laich A, Gschwentner M, Signorelli S, Burtscher C, Eichmuller S, Paulmichl M (2003) Cell swelling stimulates cytosol to membrane transposition of ICln. J Biol Chem 278:50163–50174

    Article  PubMed  CAS  Google Scholar 

  52. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JM, Wun CC, Davis BR, Braunwald E (1996) The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 335:1001–1009

    Article  PubMed  CAS  Google Scholar 

  53. Sasaki M, Ishikawa SE (2006) Renal action of vasopressin. Nippon Rinsho 64(Suppl 2):257–264

    PubMed  Google Scholar 

  54. Sasaki S, Noda Y (2007) Aquaporin-2 protein dynamics within the cell. Curr Opin Nephrol Hypertens 16:348–352

    Article  PubMed  CAS  Google Scholar 

  55. Seabra MC (1998) Membrane association and targeting of prenylated Ras-like GTPases. Cell Signal 10:167–172

    Article  PubMed  CAS  Google Scholar 

  56. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, McKillop JH, Packard CJ (1995) Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 333:1301–1307

    Article  PubMed  CAS  Google Scholar 

  57. Spanakis E, Milord E, Gragnoli C (2008) AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance. J Cell Physiol 217:605–617

    Article  PubMed  CAS  Google Scholar 

  58. Sparrow CP, Burton CA, Hernandez M, Mundt S, Hassing H, Patel S, Rosa R, Hermanowski-Vosatka A, Wang PR, Zhang D, Peterson L, Detmers PA, Chao YS, Wright SD (2001) Simvastatin has anti-inflammatory and antiatherosclerotic activities independent of plasma cholesterol lowering. Arterioscler Thromb Vasc Biol 21:115–121

    Article  PubMed  CAS  Google Scholar 

  59. Sun TX, Van Hoek A, Huang Y, Bouley R, McLaughlin M, Brown D (2002) Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin. Am J Physiol Renal Physiol 282:F998–F1011

    PubMed  CAS  Google Scholar 

  60. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208

    PubMed  CAS  Google Scholar 

  61. Tamma G, Klussmann E, Maric K, Aktories K, Svelto M, Rosenthal W, Valenti G (2001) Rho inhibits cAMP-induced translocation of aquaporin-2 into the apical membrane of renal cells. Am J Physiol Renal Physiol 281:F1092–F1101

    PubMed  CAS  Google Scholar 

  62. Tamma G, Klussmann E, Procino G, Svelto M, Rosenthal W, Valenti G (2003) cAMP-induced AQP2 translocation is associated with RhoA inhibition through RhoA phosphorylation and interaction with RhoGDI. J Cell Sci 116:1519–1525

    Article  PubMed  CAS  Google Scholar 

  63. Tamma G, Procino G, Strafino A, Bononi E, Meyer G, Paulmichl M, Formoso V, Svelto M, Valenti G (2007) Hypotonicity induces aquaporin-2 internalization and cytosol-to-membrane translocation of ICln in renal cells. Endocrinology 148:1118–1130

    Article  PubMed  CAS  Google Scholar 

  64. Valenti G, Procino G, Tamma G, Carmosino M, Svelto M (2005) Minireview: aquaporin 2 trafficking. Endocrinology 146:5063–5070

    Article  PubMed  CAS  Google Scholar 

  65. Vogt A, Sun J, Qian Y, Hamilton AD, Sebti SM (1997) The geranylgeranyltransferase-I inhibitor GGTI-298 arrests human tumor cells in G0/G1 and induces p21(WAF1/CIP1/SDI1) in a p53-independent manner. J Biol Chem 272:27224–27229

    Article  PubMed  CAS  Google Scholar 

  66. Yoshizaki H, Ohba Y, Kurokawa K, Itoh RE, Nakamura T, Mochizuki N, Nagashima K, Matsuda M (2003) Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J Cell Biol 162:223–232

    Article  PubMed  CAS  Google Scholar 

  67. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  PubMed  CAS  Google Scholar 

  68. Zhiri A, Houot O, Wellman-Bednawska M, Siest G (1985) Simultaneous determination of uric acid and creatinine in plasma by reversed-phase liquid chromatography. Clin Chem 31:109–112

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by grants from Fondazione Cassa di Risparmio di Puglia (FCRP) No. 25/2009 to G. Procino, from PRIN (Research Program of National Interest) projects to M. Svelto (20078ZZMZW), and from Fondo per gli Investimenti della Ricerca di Base-Rete Nazionale di Proteomica (RBRN07BMCT_009). We are grateful to G. Devito for the excellent technical assistance with the animal experiments. We would like to thank Prof. F. Palmisano (Department of Chemistry, University of Bari) for the helpful discussions and supervision of the HPLC measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Procino.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 394 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Procino, G., Barbieri, C., Carmosino, M. et al. Fluvastatin modulates renal water reabsorption in vivo through increased AQP2 availability at the apical plasma membrane of collecting duct cells. Pflugers Arch - Eur J Physiol 462, 753–766 (2011). https://doi.org/10.1007/s00424-011-1007-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-1007-5

Keywords

Navigation