Skip to main content

Advertisement

Log in

Enhanced catecholamine release in mice expressing PKB/SGK-resistant GSK3

  • Cardiovascular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Glycogen synthase kinase 3 (GSK3) plays a decisive role in the regulation of multiple functions. GSK3 is phosphorylated and its activity inhibited by protein kinase B (PKB/Akt) and serum and glucocorticoid inducible kinase (SGK) isoforms, which are in turn activated by growth factors through phosphoinositide (PI) 3 kinase signaling. PI3/PKB/Akt/SGK-dependent inhibition of GSK3 is disrupted in gene-targeted knockin mice with mutated and thus PKB/SGK-resistant GSK3α,ß (gsk3 KI) where the serine of the PKB/SGK phosphorylation site has been replaced by alanine. Recent experiments revealed that blood pressure is significantly higher in those mice than in wild type mice (gsk3 WT). The present study was performed to elucidate the underlying cause. Blood pressure was determined with the tail cuff method, heart rate by ECG measurements, catecholamine concentrations by ELISA, and vanillylmandelic acid by high pressure liquid chromatography. As a result, blood pressure and heart rate were significantly higher in gsk3 KI than in gsk3 WT mice. The α-adrenergic blocker prazosin (1 μg/g body weight, b.w.) and the ganglion blocker hexamethonium (40 μg/g b.w.) decreased blood pressure to a larger extent in gsk3 KI than in gsk3 WT mice and virtually abrogated the difference between genotypes. Similarly, the β-adrenergic blocker atenolol (5 μg/g b.w.) decreased the heart rate to a larger extent in gsk3 KI than in gsk3 WT mice and again dissipated the difference of heart rate between genotypes. Plasma epinephrine and norepinephrine concentrations, as well as urinary excretion of vanillylmandelic acid, were significantly higher in gsk3 KI than in gsk3 WT mice. The observations reveal a completely novel function of PKB/Akt/SGK-dependent GSK3 signaling, i.e., regulation of catecholamine release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ackermann TF, Kempe DS, Lang F, Lang UE (2010) Hyperactivity and enhanced curiosity of mice expressing PKB/SGK-resistant glycogen synthase kinase-3 (GSK-3). Cell Physiol Biochem 25:775–786

    Article  PubMed  CAS  Google Scholar 

  2. Aubry JM, Schwald M, Ballmann E, Karege F (2009) Early effects of mood stabilizers on the Akt/GSK-3beta signaling pathway and on cell survival and proliferation. Psychopharmacology (Berl) 205:419–429

    Article  CAS  Google Scholar 

  3. Berthonneche C, Peter B, Schupfer F, Hayoz P, Kutalik Z, Abriel H, Pedrazzini T, Beckmann JS, Bergmann S, Maurer F (2009) Cardiovascular response to beta-adrenergic blockade or activation in 23 inbred mouse strains. PLoS One 4:e6610

    Article  PubMed  Google Scholar 

  4. Beurel E, Michalek SM, Jope RS (2010) Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol 31:24–31

    Article  PubMed  CAS  Google Scholar 

  5. Boini KM, Amann K, Kempe D, Alessi DR, Lang F (2009) Proteinuria in mice expressing PKB/SGK-resistant GSK3. Am J Physiol Renal Physiol 296:F153–F159

    Article  PubMed  CAS  Google Scholar 

  6. Boini KM, Bhandaru M, Mack A, Lang F (2008) Steroid hormone release as well as renal water and electrolyte excretion of mice expressing PKB/SGK-resistant GSK3. Pflugers Arch 456:1207–1216

    Article  PubMed  CAS  Google Scholar 

  7. Cohen P, Goedert M (2004) GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov 3:479–487

    Article  PubMed  CAS  Google Scholar 

  8. Cross HR, Radda GK, Clarke K (1995) The role of Na+/K + ATPase activity during low flow ischemia in preventing myocardial injury: a 31P, 23Na and 87Rb NMR spectroscopic study. Magn Reson Med 34:673–685

    Article  PubMed  CAS  Google Scholar 

  9. Cuny GD (2009) Kinase inhibitors as potential therapeutics for acute and chronic neurodegenerative conditions. Curr Pharm Des 15:3919–3939

    Article  PubMed  CAS  Google Scholar 

  10. Fiedler B, Wollert KC (2004) Interference of antihypertrophic molecules and signaling pathways with the Ca2+–calcineurin–NFAT cascade in cardiac myocytes. Cardiovasc Res 63:450–457

    Article  PubMed  CAS  Google Scholar 

  11. Fitzgerald PJ (2009) Is elevated noradrenaline an aetiological factor in a number of diseases? Auton Autacoid Pharmacol 29:143–156

    Article  PubMed  CAS  Google Scholar 

  12. Goldstein DS, Eisenhofer G, Kopin IJ (2003) Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Ther 305:800–811

    Article  PubMed  CAS  Google Scholar 

  13. Gould TD, Manji HK (2005) Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 30:1223–1237

    PubMed  CAS  Google Scholar 

  14. Grouzmann E, Cavadas C, Grand D, Moratel M, Aubert JF, Brunner HR, Mazzolai L (2003) Blood sampling methodology is crucial for precise measurement of plasma catecholamines concentrations in mice. Pflugers Arch 447:254–258

    Article  PubMed  CAS  Google Scholar 

  15. Hawkins PT, Anderson KE, Davidson K, Stephens LR (2006) Signalling through Class I PI3Ks in mammalian cells. Biochem Soc Trans 34:647–662

    Article  PubMed  CAS  Google Scholar 

  16. Hernandez F, Gomez de Barreda E, Fuster-Matanzo A, Lucas JJ, Avila J (2010) GSK3: a possible link between beta amyloid peptide and tau protein. Exp Neurol 223:322–5

    Article  PubMed  CAS  Google Scholar 

  17. Ising M, Holsboer F (2006) Genetics of stress response and stress-related disorders. Dialogues Clin Neurosci 8:433–444

    PubMed  Google Scholar 

  18. Janssen BJ, De Celle T, Debets JJ, Brouns AE, Callahan MF, Smith TL. Effects of anesthetics on systemic hemodynamics in mice. Am J Physiol Heart Circ Physiol. 2004;287(4):H1618-24

    Google Scholar 

  19. Katoh Y, Katoh M (2009) Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med 9:873–886

    Article  PubMed  CAS  Google Scholar 

  20. Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 93:8455–8459

    Article  PubMed  CAS  Google Scholar 

  21. Kobinger W (1984) New concepts on alpha-adrenoceptors in pharmacology. J Pharmacol 15(Suppl 1):5–22

    PubMed  CAS  Google Scholar 

  22. Laborie C, Dutriez-Casteloot I, Montel V, Dickes-Coopman A, Lesage J, Vieau D (2005) Prenatal morphine exposure affects sympathoadrenal axis activity and serotonin metabolism in adult male rats both under basal conditions and after an ether inhalation stress. Neurosci Lett 381:211–216

    Article  PubMed  CAS  Google Scholar 

  23. Lang F, Bohmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V (2006) (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 86:1151–1178

    Article  PubMed  CAS  Google Scholar 

  24. Maas JW, Katz MM, Koslow SH, Swann A, Davis JM, Berman N, Bowden CL, Stokes PE, Landis H (1994) Adrenomedullary function in depressed patients. J Psychiatr Res 28:357–367

    Article  PubMed  CAS  Google Scholar 

  25. McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, Alessi DR (2005) Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J 24:1571–1583

    Article  PubMed  CAS  Google Scholar 

  26. Meneton P, Ichikawa I, Inagami T, Schnermann J (2000) Renal physiology of the mouse. Am J Physiol Renal Physiol 278:F339–F351

    PubMed  CAS  Google Scholar 

  27. Miller JS, Tallarida RJ, Unterwald EM (2009) Cocaine-induced hyperactivity and sensitization are dependent on GSK3. Neuropharmacology 56:1116–1123

    Article  PubMed  CAS  Google Scholar 

  28. Nakatani K, Horinouchi J, Yabu Y, Wada H, Nobori T (2004) Expression of endothelial nitric oxide synthase is induced by estrogen with glycogen synthase 3beta phosphorylation in MCF-7 cells. Oncol Rep 12:833–836

    PubMed  CAS  Google Scholar 

  29. Prickaerts J, Moechars D, Cryns K, Lenaerts I, van Craenendonck H, Goris I, Daneels G, Bouwknecht JA, Steckler T (2006) Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. J Neurosci 26:9022–9029

    Article  PubMed  CAS  Google Scholar 

  30. Ram CV (2010) Beta-blockers in hypertension. Am J Cardiol 106:1819–1825

    Article  PubMed  CAS  Google Scholar 

  31. Randall WC, Ardell JL, O'Toole MF, Wurster RD (1988) Differential autonomic control of SAN and AVN regions of the canine heart: structure and function. Prog Clin Biol Res 275:15–31

    PubMed  CAS  Google Scholar 

  32. Rasola A, Sciacovelli M, Pantic B, Bernardi P (2010) Signal transduction to the permeability transition pore. FEBS Lett 584:1989–1996

    Article  PubMed  CAS  Google Scholar 

  33. Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A (2009) Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol 156:885–898

    Article  PubMed  CAS  Google Scholar 

  34. Sakoda H, Gotoh Y, Katagiri H, Kurokawa M, Ono H, Onishi Y, Anai M, Ogihara T, Fujishiro M, Fukushima Y, Abe M, Shojima N, Kikuchi M, Oka Y, Hirai H, Asano T (2003) Differing roles of Akt and serum- and glucocorticoid-regulated kinase in glucose metabolism, DNA synthesis, and oncogenic activity. J Biol Chem 278:25802–25807

    Article  PubMed  CAS  Google Scholar 

  35. Shaw M, Cohen P, Alessi DR (1997) Further evidence that the inhibition of glycogen synthase kinase-3beta by IGF-1 is mediated by PDK1/PKB-induced phosphorylation of Ser-9 and not by dephosphorylation of Tyr-216. FEBS Lett 416:307–311

    Article  PubMed  CAS  Google Scholar 

  36. Sugden PH, Fuller SJ, Weiss SC, Clerk A (2008) Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. Br J Pharmacol 153(Suppl 1):S137–S153

    PubMed  CAS  Google Scholar 

  37. Sun T, Rodriguez M, Kim L (2009) Glycogen synthase kinase 3 in the world of cell migration. Dev Growth Differ 51:735–742

    Article  PubMed  CAS  Google Scholar 

  38. Swann AC, Secunda SK, Koslow SH, Katz MM, Bowden CL, Maas JW, Davis JM, Robins E (1991) Mania: sympathoadrenal function and clinical state. Psychiatry Res 37:195–205

    Article  PubMed  CAS  Google Scholar 

  39. Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, Ferrari VA, Abrams CS, Gruber PJ, Epstein JA (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13:324–331

    Article  PubMed  CAS  Google Scholar 

  40. Vallon V (2003) In vivo studies of the genetically modified mouse kidney. Nephron Physiol 94:1–5

    Article  Google Scholar 

  41. Webb IG, Nishino Y, Clark JE, Murdoch C, Walker SJ, Makowski MR, Botnar RM, Redwood SR, Shah AM, Marber MS (2010) Constitutive glycogen synthase kinase-3alpha/beta activity protects against chronic beta-adrenergic remodelling of the heart. Cardiovasc Res 87:494–503

    Article  PubMed  CAS  Google Scholar 

  42. Wu D, Pan W (2010) GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 35:161–168

    Article  PubMed  CAS  Google Scholar 

  43. Wyatt AW, Hussain A, Amann K, Klingel K, Kandolf R, Artunc F, Grahammer F, Huang DY, Vallon V, Kuhl D, Lang F (2006) DOCA-induced phosphorylation of glycogen synthase kinase 3beta. Cell Physiol Biochem 17:137–144

    Article  PubMed  CAS  Google Scholar 

  44. Xu C, Kim NG, Gumbiner BM (2009) Regulation of protein stability by GSK3 mediated phosphorylation. Cell Cycle 8:4032–4039

    Article  PubMed  CAS  Google Scholar 

  45. Zhou J, Lal H, Chen X, Shang X, Song J, Li Y, Kerkela R, Doble BW, MacAulay K, DeCaul M, Koch WJ, Farber J, Woodgett J, Gao E, Force T (2010) GSK-3alpha directly regulates beta-adrenergic signaling and the response of the heart to hemodynamic stress in mice. J Clin Invest 120:2280–2291

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical assistance of E. Faber and the meticulous preparation of the manuscript by S. Ruebe and L. Subasic. This study was supported by the Deutsche Forschungsgemeinschaft (GK 1302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Additional information

Balasaheb Siraskar and Jakob Völkl contributed equally and thus share first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siraskar, B., Völkl, J., Ahmed, M.S.E. et al. Enhanced catecholamine release in mice expressing PKB/SGK-resistant GSK3. Pflugers Arch - Eur J Physiol 462, 811–819 (2011). https://doi.org/10.1007/s00424-011-1006-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-1006-6

Keywords

Navigation