Skip to main content
Log in

Differential effects of Zn2+ on activation, deactivation, and inactivation kinetics in neuronal voltage-gated Na+ channels

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Whole-cell, patch-clamp recordings were carried out in acutely dissociated neurons from entorhinal cortex (EC) layer II to study the effects of Zn2+ on Na+ current kinetics and voltage dependence. In the presence of 200 μM extracellular Cd2+ to abolish voltage-dependent Ca2+ currents, and 100 mM extracellular Na+, 1 mM Zn2+ inhibited the transient Na+ current, I NaT, only to a modest degree (~17% on average). A more pronounced inhibition (~36%) was induced by Zn2+ when extracellular Na+ was lowered to 40 mM. Zn2+ also proved to modify I NaT voltage-dependent and kinetic properties in multiple ways. Zn2+ (1 mM) shifted the voltage dependence of I NaT activation and that of I NaT onset speed in the positive direction by ~5 mV. The voltage dependence of I NaT steady-state inactivation and that of I NaT inactivation kinetics were markedly less affected by Zn2+. By contrast, I NaT deactivation speed was prominently accelerated, and its voltage dependence was shifted by a significantly greater amount (~8 mV on average) than that of I NaT activation. In addition, the kinetics of I NaT recovery from inactivation were significantly slowed by Zn2+. Zn2+ inhibition of I NaT showed no signs of voltage dependence over the explored membrane-voltage window, indicating that the above effects cannot be explained by voltage dependence of Zn2+-induced channel-pore block. These findings suggest that the multiple, voltage-dependent state transitions that the Na+ channel undergoes through its activation path are differentially sensitive to the gating-modifying effects of Zn2+, thus resulting in differential modifications of the macroscopic current’s activation, inactivation, and deactivation. Computer modeling provided support to this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aniksztejn L, Charton G, Ben-Ari Y (1987) Selective release of endogenous zinc from the hippocampal mossy fibers in situ. Brain Res 404:58–64

    Article  PubMed  CAS  Google Scholar 

  2. Assaf SY, Chung SH (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308:73473–73476

    Article  Google Scholar 

  3. Balser JR (1999) Structure and function of the cardiac sodium channels. Cardiovasc Res 42:327–338

    Article  PubMed  CAS  Google Scholar 

  4. Bardoni R, Belluzzi O (1994) Modifications of A-current kinetics in mammalian central neurones induced by extracellular zinc. J Physiol 479:389–400

    PubMed  CAS  Google Scholar 

  5. Castelli L, Nigro MJ, Magistretti J (2007) Analysis of resurgent sodium-current expression in rat parahippocampal cortices and hippocampal formation. Brain Res 1163:44–55

    Article  PubMed  CAS  Google Scholar 

  6. Castelli L, Tanzi F, Taglietti V, Magistretti J (2003) Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol 195:121–136

    Article  PubMed  CAS  Google Scholar 

  7. Constanti A, Smart TG (1987) Zinc blocks the A-current in cultured rat sympathetic neurones. J Physiol 396:159

    Google Scholar 

  8. Cuajungco MP, Lees GJ (1997) Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis 4:137–169

    Article  PubMed  CAS  Google Scholar 

  9. Davidson JL, Kehl SJ (1995) Changes of activation and inactivation gating of the transient potassium current of rat pituitary melanotrophs caused by micromolar Cd2+ and Zn2+. Can J Physiol Pharmacol 73:36–42

    Article  PubMed  CAS  Google Scholar 

  10. Fozzard HA, Hanck DA (1996) Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol Rev 76:887–926

    PubMed  CAS  Google Scholar 

  11. Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238

    Article  PubMed  CAS  Google Scholar 

  12. Hanck DA, Sheets MF (1992) Extracellular divalent and trivalent cation effects on sodium current kinetics in single canine cardiac Purkinje cells. J Physiol 454:267–298

    PubMed  CAS  Google Scholar 

  13. Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland

    Google Scholar 

  14. Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209

    Article  PubMed  CAS  Google Scholar 

  15. Horn R, Vandenberg CA (1984) Statistical properties of single sodium channels. J Gen Physiol 84:505–534

    Article  PubMed  CAS  Google Scholar 

  16. Horn R, Vandenberg CA, Lange K (1984) Statistical analysis of single sodium channels. Effects of N-bromoacetamide. Biophys J 45:323–335

    Article  PubMed  CAS  Google Scholar 

  17. Howell GA, Welch MG, Frederickson CJ (1984) Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308:736–738

    Article  PubMed  CAS  Google Scholar 

  18. Irvine LA, Jafri MS, Winslow RL (1999) Cardiac sodium channel Markov model with temperature dependence and recovery from inactivation. Biophys J 76:1868–1885

    Article  PubMed  CAS  Google Scholar 

  19. Kerchner GA, Canzoniero LM, Yu SP, Ling C, Choi DW (2000) Zn2+ current is mediated by voltage-gated Ca2+ channels and enhanced by extracellular acidity in mouse cortical neurones. J Physiol 528:39–52

    Article  PubMed  CAS  Google Scholar 

  20. Kuo CC, Bean BP (1994) Na+ channels must deactivate to recover from inactivation. Neuron 12:819–829

    Article  PubMed  CAS  Google Scholar 

  21. Magistretti J, Alonso A (1999) Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons: a whole-cell and single-channel study. J Gen Physiol 114:491–509

    Article  PubMed  CAS  Google Scholar 

  22. Magistretti J, Brevi S, de Curtis M (2001) Ni2+ slows the activation kinetics of high-voltage-activated Ca2+ currents in cortical neurons: evidence for a mechanism of action independent of channel-pore block. J Membr Biol 179:243–262

    Article  PubMed  CAS  Google Scholar 

  23. Magistretti J, Castelli L, Taglietti V, Tanzi F (2003) Dual effect of Zn2+ on multiple types of voltage-dependent Ca2+ currents in rat palaeocortical neurons. Neuroscience 117:249–264

    Article  PubMed  CAS  Google Scholar 

  24. Mathie A, Sutton GL, Clarke CE, Veale EL (2006) Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol Ther 111:567–583

    Article  PubMed  CAS  Google Scholar 

  25. Mayer ML, Vyklicky L Jr (1989) The action of zinc on synaptic transmission and neuronal excitability in cultures of mouse hippocampus. J Physiol 415:351–365

    PubMed  CAS  Google Scholar 

  26. Peters S, Koh J, Choi DW (1987) Zinc selectively blocks the action of N-methyl-d-aspartate on cortical neurons. Science 236:589–593

    Article  PubMed  CAS  Google Scholar 

  27. Satin J, Kyle JW, Chen M, Rogart RB, Fozzard HA (1992) The cloned cardiac Na channel α-subunit expressed in Xenopus oocytes shows gating and blocking properties of native channels. J Membr Biol 130:11–22

    PubMed  CAS  Google Scholar 

  28. Sheets MF, Hanck DA (1995) Voltage-dependent open-state inactivation of cardiac sodium channels: gating current studies with Anthopleurin-A toxin. J Gen Physiol 106:617–640

    Article  PubMed  CAS  Google Scholar 

  29. Smart TG, Constanti A (1990) Differential effect of zinc on the vertebrate GABAA-receptor complex. Br J Pharmacol 99:643–654

    PubMed  CAS  Google Scholar 

  30. Smart TG, Xie X, Krishek BJ (1994) Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog Neurobiol 42:393–341

    Article  PubMed  CAS  Google Scholar 

  31. Smith MR, Smith RD, Plummer NW, Meisler MH, Goldin AL (1998) Functional analysis of the mouse Scn8a sodium channel. J Neurosci 18:6093–6102

    PubMed  CAS  Google Scholar 

  32. Spires S, Begenisich T (1992) Chemical properties of the divalent cation binding site on potassium channels. J Gen Physiol 100:181–193

    Article  PubMed  CAS  Google Scholar 

  33. Taddese A, Bean BP (2002) Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuron 33:587–600

    Article  PubMed  CAS  Google Scholar 

  34. Vandenberg CA, Bezanilla F (1991) A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon. Biophys J 60:1511–1533

    Article  PubMed  CAS  Google Scholar 

  35. Visentin S, Zaza A, Ferroni A, Tromba C, DiFrancesco C (1990) Sodium current block caused by group IIb cations in calf Purkinje fibres and in guinea-pig ventricular myocytes. Pflügers Arch 417:213–222

    Article  PubMed  CAS  Google Scholar 

  36. Weiss JH, Sensi SL, Koh JY (2000) Zn2+: a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 21:395–401

    Article  PubMed  CAS  Google Scholar 

  37. Westbrook GL, Mayer ML (1987) Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328:640–643

    Article  PubMed  CAS  Google Scholar 

  38. White JA, Alonso A, Kay AR (1993) A heart-like Na+ current in the medial entorhinal cortex. Neuron 11:1037–1047

    Article  PubMed  CAS  Google Scholar 

  39. Zeng D, Kyle JW, Martin RL, Ambler KS, Hanck DA (1996) Cardiac sodium channels expressed in a peripheral neurotumor-derived cell line, RT4-B8. Am J Physiol 270:C1522–1531

    PubMed  CAS  Google Scholar 

  40. Zhang S, Kehl SJ, Fedida D (2001) Modulation of Kv1.5 potassium channel gating by extracellular zinc. Biophys J 81:125–136

    Article  PubMed  CAS  Google Scholar 

  41. Zhang S, Kwan DC, Fedida D, Kehl SJ (2001) External K+ relieves the block but not the gating shift caused by Zn2+ in human Kv1.5 potassium channels. J Physiol 532:349–358

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Magistretti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 43.5 kb)

ESM 2

(DOC 363 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nigro, M.J., Perin, P. & Magistretti, J. Differential effects of Zn2+ on activation, deactivation, and inactivation kinetics in neuronal voltage-gated Na+ channels. Pflugers Arch - Eur J Physiol 462, 331–347 (2011). https://doi.org/10.1007/s00424-011-0972-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0972-z

Keywords

Navigation