Skip to main content
Log in

cAMP target sequences enhCRE and CNRE sense low-salt intake to increase human renin gene expression in vivo

  • Signaling and Cell Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

This study aimed to assess the role of cAMP target sequences enhancer cAMP response element (enhCRE) and cAMP and overlapping negative response element (CNRE) in the control of human renin gene (REN) in vivo. enhCRE and CNRE were silenced by mutations in a 12.2-kb human renin promoter fused to LacZ reporter gene. This construct was used to generate transgenic mice (RENMut-LacZ). The expression of the transgene was correctly targeted to the juxtaglomerular portions of renal afferent arterioles which express endogenous mouse renin. Therefore, enhCRE and CNRE do not seem to be relevant for the control of the cell-specific expression of the human renin gene. The β-adrenoreceptor agonist isoproterenol (10 mg/kg/day, for 2 days) stimulated the endogenous renin, but not the LacZ mRNA expression. Treatment of RENMut-LacZ mice with the angiotensin converting enzyme inhibitor (enalapril 10 mg/kg/day, for 7 days) or their crossing to angiotensin receptor type 1a knockout mice led to increased renin and LacZ mRNA levels. Renin expression was upregulated by low-salt diet (0.03% NaCl, for 10 days) and downregulated by high-salt diet (4% NaCl, for 10 days). In contrast, low-salt diet did not influence, while high-salt diet inhibited the expression of LacZ. In summary, enhCRE and CNRE appear to be necessary for the transactivation of the human renin gene through β-adrenoreceptors and by low-salt diet. Our data also suggest that different intracellular mechanisms mediate the effect of low- and high-salt intake on renin expression in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Borensztein P, Germain S, Fuchs S, Philippe J, Corvol P, Pinet F (1994) cis-regulatory elements and trans-acting factors directing basal and cAMP-stimulated human renin gene expression in chorionic cells. Circ Res 74:764–773

    PubMed  CAS  Google Scholar 

  2. Castrop H, Hocherl K, Kurtz A, Schweda F, Todorov V, Wagner C (2010) Physiology of kidney renin. Physiol Rev 90:607–673

    Article  PubMed  CAS  Google Scholar 

  3. Castrop H, Oppermann M, Weiss Y, Huang Y, Mizel D, Lu H, Germain S, Schweda F, Theilig F, Bachmann S, Briggs J, Kurtz A, Schnermann J (2006) Reporter gene recombination in juxtaglomerular granular and collecting duct cells by human renin promoter-Cre recombinase transgene. Physiol Genomics 25:277–285

    Article  PubMed  CAS  Google Scholar 

  4. Chen L, Kim SM, Eisner C, Oppermann M, Huang Y, Mizel D, Li L, Chen M, Sequeira Lopez ML, Weinstein LS, Gomez RA, Schnermann J, Briggs JP (2010) Stimulation of renin secretion by angiotensin II blockade is Gsalpha-dependent. J Am Soc Nephrol 21:986–992

    Article  PubMed  CAS  Google Scholar 

  5. Desch M, Schreiber A, Schweda F, Madsen K, Friis UG, Weatherford ET, Sigmund CD, Sequeira Lopez ML, Gomez RA, Todorov VT (2010) Increased renin production in mice with deletion of peroxisome proliferator-activated receptor-gamma in juxtaglomerular cells. Hypertension 55:660–666

    Article  PubMed  CAS  Google Scholar 

  6. Desch M, Schubert T, Schreiber A, Mayer S, Friedrich B, Artunc F, Todorov VT (2010) PPAR{gamma}-dependent regulation of adenylate cyclase 6 amplifies the stimulatory effect of cAMP on renin gene expression. Mol Endocrinol 24:2139–2151

    Article  PubMed  CAS  Google Scholar 

  7. DiBona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77:75–197

    PubMed  CAS  Google Scholar 

  8. Fuchs S, Germain S, Philippe J, Corvol P, Pinet F (2002) Expression of renin in large arteries outside the kidney revealed by human renin promoter/LacZ transgenic mouse. Am J Pathol 161:717–725

    Article  PubMed  CAS  Google Scholar 

  9. Germain S, Konoshita T, Philippe J, Corvol P, Pinet F (1996) Transcriptional induction of the human renin gene by cyclic AMP requires cyclic AMP response element-binding protein (CREB) and a factor binding a pituitary-specific trans-acting factor (Pit-1) motif. Biochem J 316(Pt 1):107–113

    PubMed  CAS  Google Scholar 

  10. Germain S, Philippe J, Fuchs S, Lengronne A, Corvol P, Pinet F (1997) Regulation of human renin secretion and gene transcription in Calu-6 cells. FEBS Lett 407:177–183

    Article  PubMed  CAS  Google Scholar 

  11. Glenn ST, Jones CA, Pan L, Gross KW (2008) In vivo analysis of key elements within the renin regulatory region. Physiol Genomics 35:243–253

    Article  PubMed  CAS  Google Scholar 

  12. Gloerich M, Bos JL (2010) Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 50:355–375

    Article  PubMed  CAS  Google Scholar 

  13. Horiuchi M, Pratt RE, Nakamura N, Dzau VJ (1993) Distinct nuclear proteins competing for an overlapping sequence of cyclic adenosine monophosphate and negative regulatory elements regulate tissue-specific mouse renin gene expression. J Clin Invest 92:1805–1811

    Article  PubMed  CAS  Google Scholar 

  14. Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N, Smithies O, Coffman TM (1995) Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci USA 92:3521–3525

    Article  PubMed  CAS  Google Scholar 

  15. Kim SM, Chen L, Faulhaber-Walter R, Oppermann M, Huang Y, Mizel D, Briggs JP, Schnermann J (2007) Regulation of renin secretion and expression in mice deficient in beta1- and beta2-adrenergic receptors. Hypertension 50:103–109

    Article  PubMed  CAS  Google Scholar 

  16. Klar J, Sandner P, Muller MW, Kurtz A (2002) Cyclic AMP stimulates renin gene transcription in juxtaglomerular cells. Pflugers Arch 444:335–344

    Article  PubMed  CAS  Google Scholar 

  17. Lang JA, Ying LH, Morris BJ, Sigmund CD (1996) Transcriptional and posttranscriptional mechanisms regulate human renin gene expression in Calu-6 cells. Am J Physiol 271:F94–F100

    PubMed  CAS  Google Scholar 

  18. Mangrum AJ, Gomez RA, Norwood VF (2002) Effects of AT(1A) receptor deletion on blood pressure and sodium excretion during altered dietary salt intake. Am J Physiol Renal Physiol 283:F447–F453

    PubMed  CAS  Google Scholar 

  19. Markus MA, Goy C, Adams DJ, Lovicu FJ, Morris BJ (2007) Renin enhancer is crucial for full response in renin expression to an in vivo stimulus. Hypertension 50:933–938

    Article  PubMed  CAS  Google Scholar 

  20. Morello F, de Boer RA, Steffensen KR, Gnecchi M, Chisholm JW, Boomsma F, Anderson LM, Lawn RM, Gustafsson JA, Lopez-Ilasaca M, Pratt RE, Dzau VJ (2005) Liver X receptors alpha and beta regulate renin expression in vivo. J Clin Invest 115:1913–1922

    Article  PubMed  CAS  Google Scholar 

  21. Mrowka R, Steege A, Kaps C, Herzel H, Thiele BJ, Persson PB, Bluthgen N (2007) Dissecting the action of an evolutionary conserved non-coding region on renin promoter activity. Nucleic Acids Res 35:5120–5129

    Article  PubMed  CAS  Google Scholar 

  22. Pan L, Black TA, Shi Q, Jones CA, Petrovic N, Loudon J, Kane C, Sigmund CD, Gross KW (2001) Critical roles of a cyclic AMP responsive element and an E-box in regulation of mouse renin gene expression. J Biol Chem 276:45530–45538

    Article  PubMed  CAS  Google Scholar 

  23. Pan L, Xie Y, Black TA, Jones CA, Pruitt SC, Gross KW (2001) An Abd-B class HOX.PBX recognition sequence is required for expression from the mouse Ren-1c gene. J Biol Chem 276:32489–32494

    Article  PubMed  CAS  Google Scholar 

  24. Petrovic N, Black TA, Fabian JR, Kane C, Jones CA, Loudon JA, Abonia JP, Sigmund CD, Gross KW (1996) Role of proximal promoter elements in regulation of renin gene transcription. J Biol Chem 271:22499–22505

    Article  PubMed  CAS  Google Scholar 

  25. Sauter A, Machura K, Neubauer B, Kurtz A, Wagner C (2008) Development of renin expression in the mouse kidney. Kidney Int 73:43–51

    Article  PubMed  CAS  Google Scholar 

  26. Schweda F, Klar J, Narumiya S, Nusing RM, Kurtz A (2004) Stimulation of renin release by prostaglandin E2 is mediated by EP2 and EP4 receptors in mouse kidneys. Am J Physiol Renal Physiol 287:F427–F433

    Article  PubMed  CAS  Google Scholar 

  27. Schweda F, Segerer F, Castrop H, Schnermann J, Kurtz A (2005) Blood pressure-dependent inhibition of Renin secretion requires A1 adenosine receptors. Hypertension 46:780–786

    Article  PubMed  CAS  Google Scholar 

  28. Sequeira Lopez ML, Gomez RA (2010) Novel mechanisms for the control of renin synthesis and release. Curr Hypertens Rep 12:26–32

    Article  PubMed  CAS  Google Scholar 

  29. Tamura K, Chen YE, Horiuchi M, Chen Q, Daviet L, Yang Z, Lopez-Ilasaca M, Mu H, Pratt RE, Dzau VJ (2000) LXRalpha functions as a cAMP-responsive transcriptional regulator of gene expression. Proc Natl Acad Sci USA 97:8513–8518

    Article  PubMed  CAS  Google Scholar 

  30. Tamura K, Chen YE, Tanaka Y, Sakai M, Tsurumi Y, Koide Y, Kihara M, Pratt RE, Horiuchi M, Umemura S, Dzau VJ (2004) Nuclear receptor LXRalpha is involved in cAMP-mediated human renin gene expression. Mol Cell Endocrinol 224:11–20

    Article  PubMed  CAS  Google Scholar 

  31. Tamura K, Umemura S, Yamaguchi S, Iwamoto T, Kobayashi S, Fukamizu A, Murakami K, Ishii M (1994) Mechanism of cAMP regulation of renin gene transcription by proximal promoter. J Clin Invest 94:1959–1967

    Article  PubMed  CAS  Google Scholar 

  32. Tanimoto K, Sugiura A, Kanafusa S, Saito T, Masui N, Yanai K, Fukamizu A (2008) A single nucleotide mutation in the mouse renin promoter disrupts blood pressure regulation. J Clin Invest 118:1006–1016

    PubMed  CAS  Google Scholar 

  33. Todorov VT, Desch M, Schmitt-Nilson N, Todorova A, Kurtz A (2007) Peroxisome proliferator-activated receptor-gamma is involved in the control of renin gene expression. Hypertension 50:939–944

    Article  PubMed  CAS  Google Scholar 

  34. Todorov VT, Desch M, Schubert T, Kurtz A (2008) The Pal3 promoter sequence is critical for the regulation of human renin gene transcription by peroxisome proliferator-activated receptor-gamma. Endocrinology 149:4647–4657

    Article  PubMed  CAS  Google Scholar 

  35. Todorov VT, Volkl S, Muller M, Bohla A, Klar J, Kunz-Schughart LA, Hehlgans T, Kurtz A (2004) Tumor necrosis factor-alpha activates NFkappaB to inhibit renin transcription by targeting cAMP-responsive element. J Biol Chem 279:1458–1467

    Article  PubMed  CAS  Google Scholar 

  36. Vo N, Goodman RH (2001) CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 276:13505–13508

    PubMed  CAS  Google Scholar 

  37. Yang T, Endo Y, Huang YG, Smart A, Briggs JP, Schnermann J (2000) Renin expression in COX-2-knockout mice on normal or low-salt diets. Am J Physiol Renal Physiol 279:F819–F825

    PubMed  CAS  Google Scholar 

  38. Ying L, Morris BJ, Sigmund CD (1997) Transactivation of the human renin promoter by the cyclic AMP/protein kinase A pathway is mediated by both cAMP-responsive element binding protein-1 (CREB)-dependent and CREB-independent mechanisms in Calu-6 cells. J Biol Chem 272:2412–2420

    Article  PubMed  CAS  Google Scholar 

  39. Yuan W, Pan W, Kong J, Zheng W, Szeto FL, Wong KE, Cohen R, Klopot A, Zhang Z, Li YC (2007) 1,25-dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. J Biol Chem 282:29821–29830

    Article  PubMed  CAS  Google Scholar 

  40. Zhou X, Davis DR, Sigmund CD (2006) The human renin kidney enhancer is required to maintain base-line renin expression but is dispensable for tissue-specific, cell-specific, and regulated expression. J Biol Chem 281:35296–35304

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Deutsche Forschungsgemeinschaft grant SFB 699/B1 to V.T.T. We gratefully acknowledge the excellent technical assistance of Dr. Anelia Todorova and Sandra Mayer.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir T. Todorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desch, M., Harlander, S., Neubauer, B. et al. cAMP target sequences enhCRE and CNRE sense low-salt intake to increase human renin gene expression in vivo. Pflugers Arch - Eur J Physiol 461, 567–577 (2011). https://doi.org/10.1007/s00424-011-0956-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0956-z

Keywords

Navigation