Skip to main content
Log in

Bimodal effect of alkalization on the polycystin transient receptor potential channel, PKD2L1

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Polycystic kidney disease 2-like 1(PKD2L1), previously called transient receptor potential polycystin 3 (TRPP3), forms constitutively active voltage-dependent nonselective cation channels in the plasma membrane. The mechanism of regulation of PKD2L1 channels, however, has been poorly understood. In the present study, we found a bell-shaped alkaline pH dependence of PKD2L1 channel activity at the single-channel and whole-cell levels in patch-clamp recordings in HEK293T cells overexpressing mouse PKD2L1: alkalization to pH 8.0–9.0 increased the PKD2L1 currents, but alkalization to pH 10.0 decreased them. Single-channel analysis revealed that alkalization changed the open probability of PKD2L1 channels, but not their single-channel conductance. In addition, the voltage dependence of PKD2L1 channels was negatively and positively shifted by treatment with solutions of pH 8.0–9.0 and pH 10.0, respectively. These results indicate that the voltage-dependent gating of PKD2L1 channels was modulated by alkalization through two different mechanisms. Interestingly, we observed rebound activation of the PKD2L1 channel on washout of the alkaline solution after PKD2L1 channel inhibition at pH 10.0, suggesting that alkalization to pH 10.0 decreased PKD2L1 currents by inactivating the channels. Consistently, the PKD2L1 tail currents were accelerated by alkalization. These results suggest that alkalization is a bimodal modulator of mouse PKD2L1 channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Basora N, Nomura H, Berger UV et al (2002) Tissue and cellular localization of a novel polycystic kidney disease-like gene product, polycystin-L. J Am Soc Nephrol 13:293–301

    PubMed  CAS  Google Scholar 

  2. Chang RB, Waters H, Liman ER (2010) A proton current drives action potentials in genetically identified sour taste cells. Proc Natl Acad Sci USA 107:22320–22325

    Article  PubMed  CAS  Google Scholar 

  3. Chen XZ, Vassilev PM, Basora N et al (1999) Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature 401:383–386

    PubMed  CAS  Google Scholar 

  4. Dhaka A, Uzzell V, Dubin AE et al (2009) TRPV1 is activated by both acidic and basic pH. J Neurosci 29:153–158

    Article  PubMed  CAS  Google Scholar 

  5. Fujita F, Uchida K, Moriyama T et al (2008) Intracellular alkalization causes pain sensation through activation of TRPA1 in mice. J Clin Invest 118:4049–4057

    Article  PubMed  CAS  Google Scholar 

  6. Huang AL, Chen X, Hoon MA et al (2006) The cells and logic for mammalian sour taste detection. Nature 442:934–938

    Article  PubMed  CAS  Google Scholar 

  7. Inada H, Kawabata F, Ishimaru Y et al (2008) Off-response property of an acid-activated cation channel complex PKD1L3-PKD2L1. EMBO Rep 9:690–697

    Article  PubMed  CAS  Google Scholar 

  8. Ishii S, Misaka T, Kishi M et al (2009) Acetic acid activates PKD1L3-PKD2L1 channel—a candidate sour taste receptor. Biochem Biophys Res Commun 385:346–350

    Article  PubMed  CAS  Google Scholar 

  9. Ishimaru Y, Inada H, Kubota M et al (2006) Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci USA 103:12569–12574

    Article  PubMed  CAS  Google Scholar 

  10. Ishimaru Y, Katano Y, Yamamoto K et al (2010) Interaction between PKD1L3 and PKD2L1 through their transmembrane domains is required for localization of PKD2L1 at taste pores in taste cells of circumvallate and foliate papillae. FASEB J 24:4058–4067

    Article  PubMed  CAS  Google Scholar 

  11. Kawaguchi H, Yamanaka A, Uchida K et al (2010) Activation of polycystic kidney disease-2-like 1 (PKD2L1)-PKD1L3 complex by acid in mouse taste cells. J Biol Chem 285:17277–17281

    Article  PubMed  CAS  Google Scholar 

  12. Nelson TM, Lopezjimenez ND, Tessarollo L et al (2010) Taste function in mice with a targeted mutation of the pkd1l3 gene. Chem Senses 35:565–577

    Article  PubMed  CAS  Google Scholar 

  13. Nilius B, Talavera K, Owsianik G et al (2005) Gating of TRP channels: a voltage connection? J Physiol 567:35–44

    Article  PubMed  CAS  Google Scholar 

  14. Nilius B, Owsianik G, Voets T et al (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  PubMed  CAS  Google Scholar 

  15. Nomura H, Turco AE, Pei Y et al (1998) Identification of PKDL, a novel polycystic kidney disease 2-like gene whose murine homologue is deleted in mice with kidney and retinal defects. J Biol Chem 273:25967–25973

    Article  PubMed  CAS  Google Scholar 

  16. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  PubMed  CAS  Google Scholar 

  17. Ryu S, Liu B, Qin F (2003) Low pH potentiates both capsaicin binding and channel gating of VR1 receptors. J Gen Physiol 122:45–61

    Article  PubMed  CAS  Google Scholar 

  18. Shimizu T, Janssens A, Voets T et al (2009) Regulation of the murine TRPP3 channel by voltage, pH, and changes in cell volume. Pflügers Arch 457:795–807

    Article  PubMed  CAS  Google Scholar 

  19. Sugiura T, Tominaga M, Katsuya H et al (2002) Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J Neurophysiol 88:544–548

    PubMed  CAS  Google Scholar 

  20. Talavera K, Yasumatsu K, Voets T et al (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438:1022–1025

    Article  PubMed  CAS  Google Scholar 

  21. Tristani-Firouzi M, Sanguinetti MC (2003) Structural determinants and biophysical properties of HERG and KCNQ1 channel gating. J Mol Cell Cardiol 35:27–35

    Article  PubMed  CAS  Google Scholar 

  22. Vandenberg JI, Torres AM, Campbell TJ et al (2004) The HERG K+ channel: progress in understanding the molecular basis of its unusual gating kinetics. Eur Biophys J 33:89–97

    Article  PubMed  CAS  Google Scholar 

  23. Veldhuisen B, Spruit L, Dauwerse HG et al (1999) Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2). Eur J Hum Genet 7:860–872

    Article  PubMed  CAS  Google Scholar 

  24. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  PubMed  CAS  Google Scholar 

  25. Voets T, Droogmans G, Wissenbach U et al (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:748–754

    Article  PubMed  CAS  Google Scholar 

  26. Voets T, Talavera K, Owsianik G et al (2005) Sensing with TRP channels. Nat Chem Biol 1:85–92

    Article  PubMed  CAS  Google Scholar 

  27. Wu G, Hayashi T, Park JH et al (1998) Identification of PKD2L, a human PKD2-related gene: tissue-specific expression and mapping to chromosome 10q25. Genomics 54:564–568

    Article  PubMed  CAS  Google Scholar 

  28. Wu LJ, Sweet TB, Clapham DE (2010) International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 62:381–404

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all members of the Toyama and Leuven laboratories for helpful discussions. We are grateful to Dr. Elbert L. Lee for careful reading of the manuscript. This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) and from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Shimizu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 90.4 kb)

Supplementary Fig. S1

(GIF 36.7 kb)

High resolution image file (TIFF 864 kb)

Supplementary Fig. S2

(GIF 28.6 kb)

High resolution image file (TIFF 864 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, T., Higuchi, T., Fujii, T. et al. Bimodal effect of alkalization on the polycystin transient receptor potential channel, PKD2L1. Pflugers Arch - Eur J Physiol 461, 507–513 (2011). https://doi.org/10.1007/s00424-011-0934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0934-5

Keywords

Navigation