Skip to main content
Log in

Role of cellular mechanics in the function and life span of vascular endothelium

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The vascular endothelium plays a crucial role in vessel homeostasis and is implicated in the pathogenesis of cardiovascular disease. The function and life span of endothelial cells, therefore, have a large impact upon the quality and expectancy of an individual’s life. Exposure to haemodynamic forces determines the phenotype of endothelial cells. Turbulent blood flow, disturbed shear stress and a rising tension of the vessel wall result in endothelial dysfunction and an enhanced endothelial cell turnover. In this scenario, the role of endothelial mechanics is yet poorly described. The streaming blood exerts shear forces transmitted to the soft cortical actin mesh immediately underneath the plasma membrane. The mechanical properties of this actin cortex seem to be an important regulator of endothelial function. Aldosterone and high plasma sodium stiffen the endothelial cell cortex which is accompanied by a decrease in NO release. If endothelial stiffening is only transient, it may be a useful mechanism to compensate for any decrease in arterial blood pressure. Long-term stiffening of the cell, however, may lead to endothelial dysfunction and may contribute to cardiovascular disorders, as observed in disturbed aldosterone/sodium homeostasis. In this case, the mineralocorticoid receptor antagonist spironolactone maintains the endothelial cell cortex soft and thereby preserves normal endothelial function and longevity. This may explain the recently observed beneficial effects of spironolactone on the cardiovascular system. Taken together, the review highlights the importance of elasticity for normal endothelial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adrogue HJ, Madias NE (2007) Sodium and potassium in the pathogenesis of hypertension. N Engl J Med 356:1966–1978

    Article  PubMed  CAS  Google Scholar 

  2. Aird WC (2008) Endothelium in health and disease. Pharmacol Rep 60:139–143

    PubMed  Google Scholar 

  3. Barrett-Connor E, Bush TL (1991) Estrogen and coronary heart disease in women. JAMA 265:1861–1867

    Article  PubMed  CAS  Google Scholar 

  4. Benetos A, Lacolley P, Safar ME (1997) Prevention of aortic fibrosis by spironolactone in spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol 17:1152–1156

    Article  PubMed  CAS  Google Scholar 

  5. Blacher J, Amah G, Girerd X, Kheder A, Ben Mais H, London GM, Safar ME (1997) Association between increased plasma levels of aldosterone and decreased systemic arterial compliance in subjects with essential hypertension. Am J Hypertens 10:1326–1334

    Article  PubMed  CAS  Google Scholar 

  6. Brilla CG, Matsubara LS, Weber KT (1993) Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol 25:563–575

    Article  PubMed  CAS  Google Scholar 

  7. Brooks AR, Lelkes PI, Rubanyi GM (2002) Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow. Physiol Genomics 9:27–41

    PubMed  CAS  Google Scholar 

  8. Cantiello HF, Stow JL, Prat AG, Ausiello DA (1991) Actin filaments regulate epithelial Na+ channel activity. Am J Physiol 261:C882–C888

    PubMed  CAS  Google Scholar 

  9. Caplan BA, Schwartz CJ (1973) Increased endothelial cell turnover in areas of in vivo Evans Blue uptake in the pig aorta. Atherosclerosis 17:401–417

    Article  PubMed  CAS  Google Scholar 

  10. Chen BP, Li YS, Zhao Y, Chen KD, Li S, Lao J, Yuan S, Shyy JY, Chien S (2001) DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol Genomics 7:55–63

    Article  PubMed  CAS  Google Scholar 

  11. Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6:16–26

    Article  PubMed  CAS  Google Scholar 

  12. Davies PF, Remuzzi A, Gordon EJ, Dewey CF Jr, Gimbrone MA Jr (1986) Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci USA 83:2114–2117

    Article  PubMed  CAS  Google Scholar 

  13. Davies PF, Zilberberg J, Helmke BP (2003) Spatial microstimuli in endothelial mechanosignaling. Circ Res 92:359–370

    Article  PubMed  CAS  Google Scholar 

  14. De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr, Shin WS, Liao JK (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96:60–68

    Article  PubMed  Google Scholar 

  15. de Nigris F, Lerman LO, Ignarro SW, Sica G, Lerman A, Palinski W, Ignarro LJ, Napoli C (2003) Beneficial effects of antioxidants and l-arginine on oxidation-sensitive gene expression and endothelial NO synthase activity at sites of disturbed shear stress. Proc Natl Acad Sci USA 100:1420–1425

    Article  PubMed  Google Scholar 

  16. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185

    Article  PubMed  Google Scholar 

  17. Dimmeler S, Haendeler J, Nehls M, Zeiher AM (1997) Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med 185:601–607

    Article  PubMed  CAS  Google Scholar 

  18. Dimmeler S, Haendeler J, Zeiher AM (2002) Regulation of endothelial cell apoptosis in atherothrombosis. Curr Opin Lipidol 13:531–536

    Article  PubMed  CAS  Google Scholar 

  19. Florentin RA, Nam SC, Lee KT, Thomas WA (1969) Increased 3H-thymidine incorporation into endothelial cells of swine fed cholesterol for 3 days. Exp Mol Pathol 10:250–255

    Article  PubMed  CAS  Google Scholar 

  20. Foteinos G, Hu Y, Xiao Q, Metzler B, Xu Q (2008) Rapid endothelial turnover in atherosclerosis-prone areas coincides with stem cell repair in apolipoprotein E-deficient mice. Circulation 117:1856–1863

    Article  PubMed  Google Scholar 

  21. Fournet-Bourguignon MP, Castedo-Delrieu M, Bidouard JP, Leonce S, Saboureau D, Delescluse I, Vilaine JP, Vanhoutte PM (2000) Phenotypic and functional changes in regenerated porcine coronary endothelial cells: increased uptake of modified LDL and reduced production of NO. Circ Res 86:854–861

    PubMed  CAS  Google Scholar 

  22. Funder JW (2005) Relative aldosterone excess: relative to what? Hypertension 46:643–644

    Article  PubMed  CAS  Google Scholar 

  23. Garg UC, Hassid A (1990) Nitric oxide-generating vasodilators inhibit mitogenesis and proliferation of BALB/C 3T3 fibroblasts by a cyclic GMP-independent mechanism. Biochem Biophys Res Commun 171:474–479

    Article  PubMed  CAS  Google Scholar 

  24. Hillebrand U, Hausberg M, Stock C, Shahin V, Nikova D, Riethmuller C, Kliche K, Ludwig T, Schillers H, Schneider SW, Oberleithner H (2006) 17beta-estradiol increases volume, apical surface and elasticity of human endothelium mediated by Na+/H+ exchange. Cardiovasc Res 69:916–924

    Article  PubMed  CAS  Google Scholar 

  25. Hobson B, Denekamp J (1984) Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer 49:405–413

    Article  PubMed  CAS  Google Scholar 

  26. Hornsby PJ (2010) Senescence and life span. Pflugers Arch 459:291–299

    Article  PubMed  CAS  Google Scholar 

  27. Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599

    Article  PubMed  CAS  Google Scholar 

  28. Kasas S, Wang X, Hirling H, Marsault R, Huni B, Yersin A, Regazzi R, Grenningloh G, Riederer B, Forro L, Dietler G, Catsicas S (2005) Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly. Cell Motil Cytoskeleton 62:124–132

    Article  PubMed  CAS  Google Scholar 

  29. Kondrikov D, Han HR, Block ER, Su Y (2006) Growth and density-dependent regulation of NO synthase by the actin cytoskeleton in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 290:L41–L50

    Article  PubMed  CAS  Google Scholar 

  30. Kumar A, Meyerrose G, Sood V, Roongsritong C (2006) Diastolic heart failure in the elderly and the potential role of aldosterone antagonists. Drugs Aging 23:299–308

    Article  PubMed  CAS  Google Scholar 

  31. Kusche-Vihrog K, Sobczak K, Bangel N, Wilhelmi M, Nechyporuk-Zloy V, Schwab A, Schillers H, Oberleithner H (2008) Aldosterone and amiloride alter ENaC abundance in vascular endothelium. Pflugers Arch 455:849–857

    Article  PubMed  CAS  Google Scholar 

  32. Lombes M, Oblin ME, Gasc JM, Baulieu EE, Farman N, Bonvalet JP (1992) Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circ Res 71:503–510

    PubMed  CAS  Google Scholar 

  33. Maron BA, Leopold JA (2010) Aldosterone receptor antagonists: effective but often forgotten. Circulation 121:934–939

    Article  PubMed  Google Scholar 

  34. Mazzochi C, Bubien JK, Smith PR, Benos DJ (2006) The carboxyl terminus of the alpha-subunit of the amiloride-sensitive epithelial sodium channel binds to F-actin. J Biol Chem 281:6528–6538

    Article  PubMed  CAS  Google Scholar 

  35. Nerem RM, Levesque MJ, Cornhill JF (1981) Vascular endothelial morphology as an indicator of the pattern of blood flow. J Biomech Eng 103:172–176

    Article  PubMed  CAS  Google Scholar 

  36. Nishizaka MK, Zaman MA, Green SA, Renfroe KY, Calhoun DA (2004) Impaired endothelium-dependent flow-mediated vasodilation in hypertensive subjects with hyperaldosteronism. Circulation 109:2857–2861

    Article  PubMed  CAS  Google Scholar 

  37. Oberleithner H (2005) Aldosterone makes human endothelium stiff and vulnerable. Kidney Int 67:1680–1682

    Article  PubMed  CAS  Google Scholar 

  38. Oberleithner H, Riethmuller C, Ludwig T, Hausberg M, Schillers H (2006) Aldosterone remodels human endothelium. Acta Physiol (Oxf) 187:305–312

    Article  CAS  Google Scholar 

  39. Oberleithner H, Riethmuller C, Schillers H, Macgregor GA, de Wardener HE, Hausberg M (2007) Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc Natl Acad Sci USA 104:16281–16286

    Article  PubMed  CAS  Google Scholar 

  40. Oberleithner H, Callies C, Kusche-Vihrog K, Schillers H, Shahin V, Riethmuller C, Macgregor GA, de Wardener HE (2009) Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci USA 106:2829–2834

    Article  PubMed  CAS  Google Scholar 

  41. Oberleithner H, Kusche-Vihrog K, Schillers H (2010) Endothelial cells as vascular salt sensors. Kidney Int 77:490–494

    Article  PubMed  CAS  Google Scholar 

  42. Passerini AG, Polacek DC, Shi C, Francesco NM, Manduchi E, Grant GR, Pritchard WF, Powell S, Chang GY, Stoeckert CJ Jr, Davies PF (2004) Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci USA 101:2482–2487

    Article  PubMed  CAS  Google Scholar 

  43. Pesen D, Hoh JH (2005) Modes of remodeling in the cortical cytoskeleton of vascular endothelial cells. FEBS Lett 579:473–476

    Article  PubMed  CAS  Google Scholar 

  44. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717

    Article  PubMed  CAS  Google Scholar 

  45. Prasain N, Stevens T (2009) The actin cytoskeleton in endothelial cell phenotypes. Microvasc Res 77:53–63

    Article  PubMed  CAS  Google Scholar 

  46. Radomski MW, Palmer RM, Moncada S (1987) Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol 92:181–187

    PubMed  CAS  Google Scholar 

  47. Rajagopalan S, Duquaine D, King S, Pitt B, Patel P (2002) Mineralocorticoid receptor antagonism in experimental atherosclerosis. Circulation 105:2212–2216

    Article  PubMed  CAS  Google Scholar 

  48. Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LC, Wofovitz E (2003) Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol 81:177–199

    Article  PubMed  Google Scholar 

  49. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  50. Rubanyi GM, Romero JC, Vanhoutte PM (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 250:H1145–H1149

    PubMed  CAS  Google Scholar 

  51. Sato M, Suzuki K, Ueki Y, Ohashi T (2007) Microelastic mapping of living endothelial cells exposed to shear stress in relation to three-dimensional distribution of actin filaments. Acta Biomater 3:311–319

    Article  PubMed  Google Scholar 

  52. Schiffrin EL (2006) Effects of aldosterone on the vasculature. Hypertension 47:312–318

    Article  PubMed  CAS  Google Scholar 

  53. Schnittler HJ, Schneider SW, Raifer H, Luo F, Dieterich P, Just I, Aktories K (2001) Role of actin filaments in endothelial cell–cell adhesion and membrane stability under fluid shear stress. Pflugers Arch 442:675–687

    Article  PubMed  CAS  Google Scholar 

  54. Schwartz SM (1978) Selection and characterization of bovine aortic endothelial cells. In Vitro 14:966–980

    Article  PubMed  CAS  Google Scholar 

  55. Schwartz SM, Benditt EP (1977) Aortic endothelial cell replication. I. Effects of age and hypertension in the rat. Circ Res 41:248–255

    PubMed  CAS  Google Scholar 

  56. Schwartz SM, Gajdusek CM, Selden SC III (1981) Vascular wall growth control: the role of the endothelium. Arteriosclerosis 1:107–126

    PubMed  Google Scholar 

  57. Serban DN, Nilius B, Vanhoutte PM (2010) The endothelial saga: the past, the present, the future. Pflugers Arch 459:787–792

    Article  PubMed  CAS  Google Scholar 

  58. Silvestre JS, Robert V, Heymes C, Aupetit-Faisant B, Mouas C, Moalic JM, Swynghedauw B, Delcayre C (1998) Myocardial production of aldosterone and corticosterone in the rat. Physiological regulation. J Biol Chem 273:4883–4891

    Article  PubMed  CAS  Google Scholar 

  59. Spaet TH, Lejnieks I (1967) Mitotic activity of rabbit blood vessels. Proc Soc Exp Biol Med 125:1197–1201

    PubMed  CAS  Google Scholar 

  60. Su Y, Edwards-Bennett S, Bubb MR, Block ER (2003) Regulation of endothelial nitric oxide synthase by the actin cytoskeleton. Am J Physiol Cell Physiol 284:C1542–C1549

    PubMed  CAS  Google Scholar 

  61. Takeda Y, Miyamori I, Yoneda T, Iki K, Hatakeyama H, Blair IA, Hsieh FY, Takeda R (1995) Production of aldosterone in isolated rat blood vessels. Hypertension 25:170–173

    PubMed  CAS  Google Scholar 

  62. Taylor RG, Lewis JC (1986) Endothelial cell proliferation and monocyte adhesion to atherosclerotic lesions of white carneau pigeons. Am J Pathol 125:152–160

    PubMed  CAS  Google Scholar 

  63. Tomaschitz A, Pilz S (2010) Aldosterone to renin ratio—a reliable screening tool for primary aldosteronism? Horm Metab Res 42:382–391

    Article  PubMed  CAS  Google Scholar 

  64. Vanhoutte PM (2010) Regeneration of the endothelium in vascular injury. Cardiovasc Drugs Ther 24:299–303

    Article  PubMed  Google Scholar 

  65. Wagner AH, Guldenzoph B, Lienenluke B, Hecker M (2004) CD154/CD40-mediated expression of CD154 in endothelial cells: consequences for endothelial cell–monocyte interaction. Arterioscler Thromb Vasc Biol 24:715–720

    Article  PubMed  CAS  Google Scholar 

  66. Wang N, Tolic-Norrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenovic D (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282:C606–C616

    PubMed  CAS  Google Scholar 

  67. Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC (2003) Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci USA 100:7988–7995

    Article  PubMed  CAS  Google Scholar 

  68. Williams TA, Verhovez A, Milan A, Veglio F, Mulatero P (2006) Protective effect of spironolactone on endothelial cell apoptosis. Endocrinology 147:2496–2505

    Article  PubMed  CAS  Google Scholar 

  69. Wong AJ, Pollard TD, Herman IM (1983) Actin filament stress fibers in vascular endothelial cells in vivo. Science 219:867–869

    Article  PubMed  CAS  Google Scholar 

  70. Xu Q (2009) Disturbed flow-enhanced endothelial turnover in atherosclerosis. Trends Cardiovasc Med 19:191–195

    Article  PubMed  CAS  Google Scholar 

  71. Yoder MC (2010) Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol 30:1094–1103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Hugh E. de Wardener, Imperial College, London, for critically reading the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (OB63/17-1, Koselleck OB 63/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Kliche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kliche, K., Jeggle, P., Pavenstädt, H. et al. Role of cellular mechanics in the function and life span of vascular endothelium. Pflugers Arch - Eur J Physiol 462, 209–217 (2011). https://doi.org/10.1007/s00424-011-0929-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0929-2

Keywords

Navigation