Invited review: decoding the microRNA response to hypoxia

Invited Review

Abstract

microRNAs (miRNAs) were discovered nearly two decades ago by researchers who sought to understand how basic developmental mechanisms work in the nematode Caenorhabditis elegans. Since the identification of conserved miRNA families in higher eukaryotes, there has been an explosion of interest into how these tiny RNA molecules function. miRNAs are 20–24 nucleotide non-coding RNA molecules that predominantly regulate transcripts of target genes through translational inhibition. Much recent interest has focused on the influence of miRNAs on homeostatic regulation, and in particular, hypoxic responses. The ability to sense and respond to hypoxia is of fundamental importance to aerobic organisms and dysregulated oxygen homeostasis is a hallmark in the pathophysiology of cancer, neurological dysfunction, myocardial infarction, and lung disease. miRNAs are ideal mediators of hypoxic stress responses as they are able to modify gene expression both rapidly and reversibly. This enables miRNA-mediated gene regulatory circuits to modify metabolic networks with immaculate precision and control. Therefore, one may consider miRNAs as molecular rheostats which effect tuning and switching of regulatory circuits to facilitate survival and adaptation to hypoxic conditions. Such miRNA-mediated regulatory circuits would provide flexible and conditional alternatives to “conventional” transcriptional regulation. Here, I review recent discoveries that have boosted our understanding of miRNA regulation of hypoxia and discuss where future breakthroughs in this area may be made.

Keywords

Hypoxia microRNA Metabolism DNA repair Angiogenesis Stress 

References

  1. 1.
    Bartel DP (2004) MicroRNAs. Genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  2. 2.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefPubMedGoogle Scholar
  3. 3.
    Batty D, Rapic'-Otrin V, Levine AS, Wood RD (2000) Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J Mol Biol 300:275–290CrossRefPubMedGoogle Scholar
  4. 4.
    Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8:967–975CrossRefPubMedGoogle Scholar
  5. 5.
    Bielas JH, Loeb KR, Rubin BP, True LD, Loeb LA (2006) Human cancers express a mutator phenotype. Proc Natl Acad Sci USA 103:18238–18242CrossRefPubMedGoogle Scholar
  6. 6.
    Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36CrossRefPubMedGoogle Scholar
  7. 7.
    Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10:141–148CrossRefPubMedGoogle Scholar
  8. 8.
    Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, Harris AL, Gleadle JM, Ragoussis J (2008) Hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14:1340–1348CrossRefPubMedGoogle Scholar
  9. 9.
    Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848CrossRefPubMedGoogle Scholar
  10. 10.
    Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395CrossRefPubMedGoogle Scholar
  11. 11.
    Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490CrossRefPubMedGoogle Scholar
  12. 12.
    Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864CrossRefPubMedGoogle Scholar
  13. 13.
    Cha ST, Chen PS, Johansson G, Chu CY, Wang MY, Jeng YM, Yu SL, Chen JS, Chang KJ, Jee SH, Tan CT, Lin MT, Kuo ML (2010) MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis. Cancer Res 70:2675–2685CrossRefPubMedGoogle Scholar
  14. 14.
    Chan SY, Zhang YY, Hemann C, Mahoney CE, Zweier JL, Loscalzo J (2009) MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab 10:273–284CrossRefPubMedGoogle Scholar
  15. 15.
    Chen Z, Li Y, Zhang H, Huang P, Luthra R (2010) Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene 29:4362–4368CrossRefPubMedGoogle Scholar
  16. 16.
    Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447:823–828CrossRefPubMedGoogle Scholar
  17. 17.
    Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460:479–486PubMedGoogle Scholar
  18. 18.
    Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, Pilpel Y, Nielsen FC, Oren M, Lund AH (2010) p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17:236–245CrossRefPubMedGoogle Scholar
  19. 19.
    Crosby ME, Kulshreshtha R, Ivan M, Glazer PM (2009) MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 69:1221–1229CrossRefPubMedGoogle Scholar
  20. 20.
    Duchen MR (2004) Roles of mitochondria in health and disease. Diabetes 53(Suppl 1):S96–S102CrossRefPubMedGoogle Scholar
  21. 21.
    Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54CrossRefPubMedGoogle Scholar
  22. 22.
    Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC, Martelli F (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283:15878–15883CrossRefPubMedGoogle Scholar
  23. 23.
    Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803CrossRefPubMedGoogle Scholar
  24. 24.
    Fleischhacker M, Schmidt B (2007) Circulating nucleic acids (CNAs) and cancer—a survey. Biochim Biophys Acta 1775:181–232PubMedGoogle Scholar
  25. 25.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186CrossRefPubMedGoogle Scholar
  26. 26.
    Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613PubMedGoogle Scholar
  27. 27.
    Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11:1143–1149CrossRefPubMedGoogle Scholar
  28. 28.
    Grimme JM, Honda M, Wright R, Okuno Y, Rothenberg E, Mazin AV, Ha T, Spies M (2010) Human Rad52 binds and wraps single-stranded DNA and mediates annealing via two hRad52–ssDNA complexes. Nucleic Acids Res 38:2917–2930CrossRefPubMedGoogle Scholar
  29. 29.
    Grun D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N (2005) microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1:e13CrossRefPubMedGoogle Scholar
  30. 30.
    Hebert C, Norris K, Scheper MA, Nikitakis N, Sauk JJ (2007) High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer 6:5CrossRefPubMedGoogle Scholar
  31. 31.
    Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK, Story M, Le QT, Giaccia AJ (2009) Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35:856–867CrossRefPubMedGoogle Scholar
  32. 32.
    Humphreys DT, Westman BJ, Martin DI, Preiss T (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA 102:16961–16966CrossRefPubMedGoogle Scholar
  33. 33.
    Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838CrossRefPubMedGoogle Scholar
  34. 34.
    Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12:149–162CrossRefPubMedGoogle Scholar
  35. 35.
    Johnston RJ, Hobert O (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426:845–849CrossRefPubMedGoogle Scholar
  36. 36.
    Kato M, Paranjape T, Muller RU, Nallur S, Gillespie E, Keane K, Esquela-Kerscher A, Weidhaas JB, Slack FJ (2009) The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene 28:2419–2424CrossRefPubMedGoogle Scholar
  37. 37.
    Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S, Rowan A, Yan Z, Campochiaro PA, Semenza GL (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93:1074–1081CrossRefPubMedGoogle Scholar
  38. 38.
    Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039–2049CrossRefPubMedGoogle Scholar
  39. 39.
    Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216CrossRefPubMedGoogle Scholar
  40. 40.
    Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, Mourelatos Z (2007) An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129:1141–1151CrossRefPubMedGoogle Scholar
  41. 41.
    Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101:2087–2092CrossRefPubMedGoogle Scholar
  42. 42.
    Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610PubMedGoogle Scholar
  43. 43.
    Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, Calin GA, Ivan M (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867CrossRefPubMedGoogle Scholar
  44. 44.
    Kulshreshtha R, Davuluri RV, Calin GA, Ivan M (2008) A microRNA component of the hypoxic response. Cell Death Differ 15:667–671CrossRefPubMedGoogle Scholar
  45. 45.
    Leaman D, Chen PY, Fak J, Yalcin A, Pearce M, Unnerstall U, Marks DS, Sander C, Tuschl T, Gaul U (2005) Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121:1097–1108CrossRefPubMedGoogle Scholar
  46. 46.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefPubMedGoogle Scholar
  47. 47.
    Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670CrossRefPubMedGoogle Scholar
  48. 48.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419CrossRefPubMedGoogle Scholar
  49. 49.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060CrossRefPubMedGoogle Scholar
  50. 50.
    Lee YS, Pressman S, Andress AP, Kim K, White JL, Cassidy JJ, Li X, Lubell K, Lim DH, Cho IS, Nakahara K, Preall JB, Bellare P, Sontheimer EJ, Carthew RW (2009) Silencing by small RNAs is linked to endosomal trafficking. Nat Cell Biol 11:1150–1156CrossRefPubMedGoogle Scholar
  51. 51.
    Li X, Cassidy JJ, Reinke CA, Fischboeck S, Carthew RW (2009) A microRNA imparts robustness against environmental fluctuation during development. Cell 137:273–282CrossRefPubMedGoogle Scholar
  52. 52.
    Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576–1579CrossRefPubMedGoogle Scholar
  53. 53.
    Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467:86–90CrossRefPubMedGoogle Scholar
  54. 54.
    Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM, Bartel DP, Ambros VR, Horvitz HR (2007) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet 3:e215CrossRefPubMedGoogle Scholar
  55. 55.
    Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10:431–442CrossRefPubMedGoogle Scholar
  56. 56.
    Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89CrossRefPubMedGoogle Scholar
  57. 57.
    Pocock R, Hobert O (2008) Oxygen levels affect axon guidance and neuronal migration in Caenorhabditis elegans. Nat Neurosci 11:894–900CrossRefPubMedGoogle Scholar
  58. 58.
    Pocock R, Hobert O (2010) Hypoxia activates a latent circuit for processing gustatory information in C. elegans. Nat Neurosci 13:610–614CrossRefPubMedGoogle Scholar
  59. 59.
    Ratcliffe PJ, Pugh CW, Maxwell PH (2000) Targeting tumors through the HIF system. Nat Med 6:1315–1316CrossRefPubMedGoogle Scholar
  60. 60.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906CrossRefPubMedGoogle Scholar
  61. 61.
    Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvironment. Cancer Res 56:5754–5757PubMedGoogle Scholar
  62. 62.
    Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86CrossRefPubMedGoogle Scholar
  63. 63.
    San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257CrossRefPubMedGoogle Scholar
  64. 64.
    Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208CrossRefPubMedGoogle Scholar
  65. 65.
    Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63CrossRefPubMedGoogle Scholar
  66. 66.
    Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7:345–350CrossRefPubMedGoogle Scholar
  67. 67.
    Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405:1–9PubMedGoogle Scholar
  68. 68.
    Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A (1996) Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271:32529–32537CrossRefPubMedGoogle Scholar
  69. 69.
    Simon MP, Tournaire R, Pouyssegur J (2008) The angiopoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1. J Cell Physiol 217:809–818CrossRefPubMedGoogle Scholar
  70. 70.
    Sims NR, Anderson MF (2002) Mitochondrial contributions to tissue damage in stroke. Neurochem Int 40:511–526CrossRefPubMedGoogle Scholar
  71. 71.
    Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5:659–669CrossRefPubMedGoogle Scholar
  72. 72.
    Teodoro JG, Parker AE, Zhu X, Green MR (2006) p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 313:968–971CrossRefPubMedGoogle Scholar
  73. 73.
    Then C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018CrossRefGoogle Scholar
  74. 74.
    Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799CrossRefPubMedGoogle Scholar
  75. 75.
    Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514CrossRefPubMedGoogle Scholar
  76. 76.
    Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749CrossRefPubMedGoogle Scholar
  77. 77.
    Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26:5017–5022CrossRefPubMedGoogle Scholar
  78. 78.
    Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862CrossRefPubMedGoogle Scholar
  79. 79.
    Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, Huso D, Lowenstein CJ (2010) P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci USA 107:6334–6339CrossRefPubMedGoogle Scholar
  80. 80.
    Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016CrossRefPubMedGoogle Scholar
  81. 81.
    Yu JL, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS (2002) Effect of p53 status on tumor response to antiangiogenic therapy. Science 295:1526–1528CrossRefPubMedGoogle Scholar
  82. 82.
    Zhang L, Ding L, Cheung TH, Dong MQ, Chen J, Sewell AK, Liu X, Yates JR 3rd, Han M (2007) Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell 28:598–613CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations