Skip to main content

Advertisement

Log in

Ahnak1 modulates L-type Ca2+ channel inactivation of rodent cardiomyocytes

  • Cardiovascular physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Ahnak1, a giant 700 kDa protein, has been implicated in Ca2+ signalling in various cells. Previous work suggested that the interaction between ahnak1 and Cavβ2 subunit plays a role in L-type Ca2+ current (I CaL) regulation. Here, we performed structure–function studies with the most C-terminal domain of ahnak1 (188 amino acids) containing a PxxP consensus motif (designated as 188-PSTP) using ventricular cardiomyocytes isolated from rats, wild-type (WT) mice and ahnak1-deficient mice. In vitro binding studies revealed that 188-PSTP conferred high-affinity binding to Cavβ2 (K d ∼ 60 nM). Replacement of proline residues by alanines (188-ASTA) decreased Cavβ2 affinity about 20-fold. Both 188-PSTP and 188-ASTA were functional in ahnak1-expressing rat and mouse cardiomyocytes during whole-cell patch clamp. Upon intracellular application, they increased the net Ca2+ influx by enhancing I CaL density and/or increasing I CaL inactivation time course without altering voltage dependency. Specifically, 188-ASTA, which failed to affect I CaL density, markedly slowed I CaL inactivation resulting in a 50–70% increase in transported Ca2+ during a 0 mV depolarising pulse. Both ahnak1 fragments also slowed current inactivation with Ba2+ as charge carrier. By contrast, neither 188-PSTP nor 188-ASTA affected any I CaL characteristics in ahnak1-deficient mouse cardiomyocytes. Our results indicate that the presence of endogenous ahnak1 is required for tuning the voltage-dependent component of I CaL inactivation by ahnak1 fragments. We suggest that ahnak1 modulates the accessibility of molecular determinants in Cavβ2 and/or scaffolds selectively different β-subunit isoforms in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alli AA, Gower WR Jr (2009) The C type natriuretic peptide receptor tethers AHNAK1 at the plasma membrane to potentiate arachidonic acid-induced calcium mobilization. Am J Physiol Cell Physiol 297:C1157–1167

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez J, Hamplova J, Hohaus A, Morano I, Haase H, Vassort G (2004) Calcium current in rat cardiomyocytes is modulated by the carboxyl-terminal ahnak domain. J Biol Chem 279:12456–12461

    Article  CAS  PubMed  Google Scholar 

  3. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, Guerchicoff A, Pfeiffer R, Oliva A, Wollnik B, Gelber P, Bonaros EP Jr, Burashnikov E, Wu Y, Sargent JD, Schickel S, Oberheiden R, Bhatia A, Hsu LF, Haissaguerre M, Schimpf R, Borggrefe M, Wolpert C (2007) Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 115:442–449

    Article  PubMed  Google Scholar 

  4. Behlke J, Ristau O (1997) Molecular mass determination by sedimentation velocity experiments and direct fitting of the concentration profiles. Biophys J 72:428–434

    Article  CAS  PubMed  Google Scholar 

  5. Benitah JP, Alvarez JL, Gomez AM (2009) L-type Ca(2+) current in ventricular cardiomyocytes. J Mol Cell Cardiol

  6. Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49

    Article  CAS  PubMed  Google Scholar 

  7. Cens T, Restituito S, Galas S, Charnet P (1999) Voltage and calcium use the same molecular determinants to inactivate calcium channels. J Biol Chem 274:5483–5490

    Article  CAS  PubMed  Google Scholar 

  8. Cens T, Rousset M, Leyris JP, Fesquet P, Charnet P (2006) Voltage- and calcium-dependent inactivation in high voltage-gated Ca(2+) channels. Prog Biophys Mol Biol 90:104–117

    Article  CAS  PubMed  Google Scholar 

  9. Chien AJ, Gao T, Perez-Reyes E, Hosey MM (1998) Membrane targeting of L-type calcium channels. Role of palmitoylation in the subcellular localization of the beta2a subunit. J Biol Chem 273:23590–23597

    Article  CAS  PubMed  Google Scholar 

  10. Cordeiro JM, Marieb M, Pfeiffer R, Calloe K, Burashnikov E, Antzelevitch C (2009) Accelerated inactivation of the L-type calcium current due to a mutation in CACNB2b underlies Brugada syndrome. J Mol Cell Cardiol 46:695–703

    Article  CAS  PubMed  Google Scholar 

  11. Dolphin AC (2003) Beta subunits of voltage-gated calcium channels. J Bioenerg Biomembr 35:599–620

    Article  CAS  PubMed  Google Scholar 

  12. Ferreira G, Rios E, Reyes N (2003) Two components of voltage-dependent

  13. Findlay I (2004) Physiological modulation of inactivation in L-type Ca2+ channels: one switch. J Physiol 554:275–283

    Article  CAS  PubMed  Google Scholar 

  14. Foell JD, Balijepalli RC, Delisle BP, Yunker AM, Robia SL, Walker JW, McEnery MW, January CT, Kamp TJ (2004) Molecular heterogeneity of calcium channel beta-subunits in canine and human heart: evidence for differential subcellular localization. Physiol Genomics 17:183–200

    Article  CAS  PubMed  Google Scholar 

  15. Gentil BJ, Delphin C, Benaud C, Baudier J (2003) Expression of the giant protein AHNAK (desmoyokin) in muscle and lining epithelial cells. J Histochem Cytochem 51:339–348

    CAS  PubMed  Google Scholar 

  16. Gonzalez-Gutierrez G, Miranda-Laferte E, Nothmann D, Schmidt S, Neely A, Hidalgo P (2008) The guanylate kinase domain of the beta-subunit of voltage-gated calcium channels suffices to modulate gating. Proc Natl Acad Sci USA 105:14198–14203

    Article  CAS  PubMed  Google Scholar 

  17. Haase H (2007) Ahnak, a new player in beta-adrenergic regulation of the cardiac L-type Ca(2+) channel. Cardiovasc Res 73:19–25

    Article  CAS  PubMed  Google Scholar 

  18. Haase H, Alvarez J, Petzhold D, Doller A, Behlke J, Erdmann J, Hetzer R, Regitz-Zagrosek V, Vassort G, Morano I (2005) Ahnak is critical for cardiac Ca(V)1.2 calcium channel function and its beta-adrenergic regulation. Faseb J 19:1969–1977

    Article  CAS  PubMed  Google Scholar 

  19. Haase H, Kresse A, Hohaus A, Schulte HD, Maier M, Osterziel KJ, Lange PE, Morano I (1996) Expression of calcium channel subunits in the normal and diseased human myocardium. J Mol Med 74:99–104

    Article  CAS  PubMed  Google Scholar 

  20. Haase H, Pfitzmaier B, McEnery MW, Morano I (2000) Expression of Ca(2+) channel subunits during cardiac ontogeny in mice and rats: identification of fetal alpha(1C) and beta subunit isoforms. J Cell Biochem 76:695–703

    Article  CAS  PubMed  Google Scholar 

  21. Haase H, Podzuweit T, Lutsch G, Hohaus A, Kostka S, Lindschau C, Kott M, Kraft R, Morano I (1999) Signaling from beta-adrenoceptor to L-type calcium channel: identification of a novel cardiac protein kinase A target possessing similarities to AHNAK. Faseb J 13:2161–2172

    CAS  PubMed  Google Scholar 

  22. Harry JB, Kobrinsky E, Abernethy DR, Soldatov NM (2004) New short splice variants of the human cardiac Cavbeta2 subunit: redefining the major functional motifs implemented in modulation of the Cav1.2 channel. J Biol Chem 279:46367–46372

    Article  CAS  PubMed  Google Scholar 

  23. Hashimoto T, Amagai M, Parry DA, Dixon TW, Tsukita S, Miki K, Sakai K, Inokuchi Y, Kudoh J et al (1993) Desmoyokin, a 680 kDa keratinocyte plasma membrane-associated protein, is homologous to the protein encoded by human gene

  24. Herzig S, Khan IF, Grundemann D, Matthes J, Ludwig A, Michels G, Hoppe UC, Chaudhuri D, Schwartz A, Yue DT, Hullin R (2007) Mechanism of Ca(v)1.2 channel modulation by the amino terminus of cardiac beta2-subunits. Faseb J 21:1527–1538

    Article  CAS  PubMed  Google Scholar 

  25. Hohaus A, Person V, Behlke J, Schaper J, Morano I, Haase H (2002) The carboxyl-terminal region of ahnak provides a link between cardiac L-type Ca2+ channels and the actin-based cytoskeleton. Faseb J 16:1205–1216

    Article  CAS  PubMed  Google Scholar 

  26. Huang Y, Laval SH, van Remoortere A, Baudier J, Benaud C, Anderson LV, Straub V, Deelder A, Frants RR, den Dunnen JT, Bushby K, van der Maarel SM (2007) AHNAK, a novel component of the dysferlin protein complex, redistributes to the cytoplasm with dysferlin during skeletal muscle regeneration. Faseb J 21:732–742

    Article  PubMed  Google Scholar 

  27. Jaiswal JK, Marlow G, Summerill G, Mahjneh I, Mueller S, Hill M, Miyake K, Haase H, Anderson LV, Richard I, Kiuru-Enari S, McNeil PL, Simon SM, Bashir R (2007) Patients with a non-dysferlin Miyoshi myopathy have a novel membrane repair defect. Traffic 8:77–88

    Article  PubMed  Google Scholar 

  28. Kamada Y, Yamada Y, Yamakage M, Nagashima M, Tsutsuura M, Kobayashi T, Seki S, Namiki A, Tohse N (2004) Single-channel activity of L-type Ca2+ channels reconstituted with the beta2c subunit cloned from the rat heart. Eur J Pharmacol 487:37–45

    Article  CAS  PubMed  Google Scholar 

  29. Karczewski P, Bartel S, Krause EG (1990) Differential sensitivity to isoprenaline of troponin I and phospholamban phosphorylation in isolated rat hearts. Biochem J 266:115–122

    CAS  PubMed  Google Scholar 

  30. Kobayashi T, Yamada Y, Fukao M, Tsutsuura M, Tohse N (2007) Regulation of Cav1.2 current: interaction with intracellular molecules. J Pharmacol Sci 103:347–353

    Article  CAS  PubMed  Google Scholar 

  31. Komuro A, Masuda Y, Kobayashi K, Babbitt R, Gunel M, Flavell RA, Marchesi VT (2004) The AHNAKs are a class of giant propeller-like proteins that associate with calcium channel proteins of cardiomyocytes and other cells. Proc Natl Acad Sci USA 101:4053–4058

    Article  CAS  PubMed  Google Scholar 

  32. Kouno M, Kondoh G, Horie K, Komazawa N, Ishii N, Takahashi Y, Takeda J, Hashimoto T (2004) Ahnak/Desmoyokin is dispensable for proliferation, differentiation, and maintenance of integrity in mouse epidermis. J Invest Dermatol 123:700–707

    Article  CAS  PubMed  Google Scholar 

  33. Lee IH, Lim HJ, Yoon S, Seong JK, Bae DS, Rhee SG, Bae YS (2008) Ahnak protein activates protein kinase C (PKC) through dissociation of the PKC-protein phosphatase 2A complex. J Biol Chem 283:6312–6320

    Article  CAS  PubMed  Google Scholar 

  34. Lee IH, You JO, Ha KS, Bae DS, Suh PG, Rhee SG, Bae YS (2004) AHNAK-mediated activation of phospholipase C-gamma1 through protein kinase C. J Biol Chem 279:26645–26653

    Article  CAS  PubMed  Google Scholar 

  35. Matza D, Badou A, Kobayashi KS, Goldsmith-Pestana K, Masuda Y, Komuro A, McMahon-Pratt D, Marchesi VT, Flavell RA (2008) A scaffold protein, AHNAK1, is required for calcium signaling during T cell activation. Immunity 28:64–74

    Article  CAS  PubMed  Google Scholar 

  36. Matza D, Flavell RA (2009) Roles of Ca(V) channels and AHNAK1 in T cells: the beauty and the beast. Immunol Rev 231:257–264

    Article  CAS  PubMed  Google Scholar 

  37. McGee AW, Nunziato DA, Maltez JM, Prehoda KE, Pitt GS, Bredt DS (2004) Calcium channel function regulated by the SH3-GK module in beta subunits. Neuron 42:89–99

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen JT, Turck CW, Cohen FE, Zuckermann RN, Lim WA (1998) Exploiting the basis of proline recognition by SH3 and WW domains: design of N-substituted inhibitors. Science 282:2088–2092

    Article  CAS  PubMed  Google Scholar 

  39. Restituito S, Cens T, Barrere C, Geib S, Galas S, De Waard M, Charnet P (2000) The [beta]2a subunit is a molecular groom for the Ca2+ channel inactivation gate. J Neurosci 20:9046–9052

    CAS  PubMed  Google Scholar 

  40. Salim C, Boxberg YV, Alterio J, Fereol S, Nothias F (2009) The giant protein AHNAK involved in morphogenesis and laminin substrate adhesion of myelinating Schwann cells. Glia 57:535–549

    Article  PubMed  Google Scholar 

  41. Schotten U, Haase H, Frechen D, Greiser M, Stellbrink C, Vazquez-Jimenez JF, Morano I, Allessie MA, Hanrath P (2003) The L-type Ca2+-channel subunits alpha1C and beta2 are not downregulated in atrial myocardium of patients with chronic atrial fibrillation. J Mol Cell Cardiol 35:437–443

    Article  CAS  PubMed  Google Scholar 

  42. Shao Y, Czymmek KJ, Jones PA, Fomin VP, Akanbi K, Duncan RL, Farach-Carson MC (2009) Dynamic interactions between L-type voltage-sensitive calcium channel Cav1.2 subunits and ahnak in osteoblastic cells. Am J Physiol Cell Physiol 296:C1067–1078

    Article  CAS  PubMed  Google Scholar 

  43. Shirokov R (1999) Interaction between permeant ions and voltage sensor during inactivation of N-type Ca2+ channels. J Physiol 518(Pt 3):697–703

    Article  CAS  PubMed  Google Scholar 

  44. Shtivelman E, Cohen FE, Bishop JM (1992) A human gene (AHNAK) encoding an unusually large protein with a 1.2-microns polyionic rod structure. Proc Natl Acad Sci USA 89:5472–5476

    Article  CAS  PubMed  Google Scholar 

  45. Takahashi SX, Mittman S, Colecraft HM (2003) Distinctive modulatory effects of five human auxiliary beta2 subunit splice variants on L-type calcium channel gating. Biophys J 84:3007–3021

    Article  CAS  PubMed  Google Scholar 

  46. Wei SK, Colecraft HM, DeMaria CD, Peterson BZ, Zhang R, Kohout TA, Rogers TB, Yue DT (2000) Ca(2+) channel modulation by recombinant auxiliary beta subunits expressed in young adult heart cells. Circ Res 86:175–184

    CAS  PubMed  Google Scholar 

  47. Yamada Y, Nagashima M, Tsutsuura M, Kobayashi T, Seki S, Makita N, Horio Y, Tohse N (2001) Cloning of a functional splice variant of L-type calcium channel beta 2 subunit from rat heart. J Biol Chem 276:47163–47170

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Karin Karczewski, Steffen Lutter and Wolfgang Schlegel for technical assistance. J.L.A. held a master’s fellowship from the MDC (Berlin, Germany). We thank Drs. Helmut Kettenmann and Daniel Reyes-Haro (MDC) for their support with patch clamp setup. We are grateful to Dr. Nathan Dascal who provided the α1C constructs within a project funded by the German Israel Foundation (grant no.: 930.220.2/2006). I.P. receives a stipend from that GIF project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannelore Haase.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, J.L., Petzhold, D., Pankonien, I. et al. Ahnak1 modulates L-type Ca2+ channel inactivation of rodent cardiomyocytes. Pflugers Arch - Eur J Physiol 460, 719–730 (2010). https://doi.org/10.1007/s00424-010-0853-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0853-x

Keywords

Navigation