Skip to main content
Log in

Ryanodol action on calcium sparks in ventricular myocytes

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The action of ryanodol on single cardiac ryanodine receptor (RyR2) channels in bilayers and local RyR2-mediated Ca2+ release events (Ca2+ sparks) in ventricular myocytes was defined. At the single-channel level, ryanodol intermittently modified single channels into a long-lived subconductance state with an average duration of 3.8 ± 0.2 s. Unlike ryanodine, ryanodol did not change the open probability (Po) of unmodified channels, and high concentrations did not promote full-channel closure. Ryanodol action was Po dependent with the K D varying roughly from 20 to 80 μM as Po changed from ∼0.2 to 1, respectively. Ryanodol preferentially bound during long channel openings. In intact and permeabilized rat myocytes, ryanodol evoked trains of sparks at active release sites resulting in a significant increase in overall spark frequency. Ryanodol did not increase the number of active release sites. Long-lived Ca2+ release events were observed but infrequently, and ryanodol action was readily reversed upon drug washout. We propose that ryanodol modifies a few channels during a Ca2+ spark. These modified channels mediate a sustained low-intensity Ca2+ release that repeatedly triggers sparks at the same release site. We conclude that ryanodol is an easily generated reversible probe that can be effectively used to explore RyR2-mediated Ca2+ release in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baudet S, Hove-Madsen L, Bers DM (1994) How to make and use calcium-specific mini- and microelectrodes. Meth Cell Biol 40:93–113

    Article  CAS  Google Scholar 

  2. Bénitah JP, Perrier E, Gómez AM et al (2001) Effects of aldosterone on transient outward K+ current density in rat ventricular myocytes. J Physiol (Lond) 537:151–160

    Article  Google Scholar 

  3. Bers D (2001) Excitation–contraction coupling and cardiac contractile force. Kluwer Academic, Dordrecht

    Google Scholar 

  4. Bidasee KR, Besch HR (1998) Structure-function relationships among ryanodine derivatives. Pyridyl ryanodine definitively separates activation potency from high affinity. J Biol Chem 273:12176–12186

    Article  PubMed  CAS  Google Scholar 

  5. Bidasee KR, Xu L, Meissner G et al (2003) Diketopyridylryanodine has three concentration-dependent effects on the cardiac calcium-release channel/ryanodine receptor. J Biol Chem 278:14237–14248

    Article  PubMed  CAS  Google Scholar 

  6. Buck E, Zimanyi I, Abramson JJ et al (1992) Ryanodine stabilizes multiple conformational states of the skeletal muscle calcium release channel. J Biol Chem 267:23560–23567

    PubMed  CAS  Google Scholar 

  7. Bull R, Marengo JJ, Suárez-Isla BA et al (1989) Activation of calcium channels in sarcoplasmic reticulum from frog muscle by nanomolar concentrations of ryanodine. Biophys J 56:749–756

    Article  PubMed  CAS  Google Scholar 

  8. Cannell MB, Cheng H, Lederer WJ (1995) The control of calcium release in heart muscle. Science 268:1045–1049

    Article  PubMed  CAS  Google Scholar 

  9. Chamberlain BK, Fleischer S (1988) Isolation of canine cardiac sarcoplasmic reticulum. Meth Enzymol 157:91–99

    Article  PubMed  CAS  Google Scholar 

  10. Cheng H, Song LS, Shirokova N et al (1999) Amplitude distribution of calcium sparks in confocal images: theory and studies with an automatic detection method. Biophys J 76:606–617

    Article  PubMed  CAS  Google Scholar 

  11. Cheng H, Lederer W, Cannell M (1993) Calcium sparks: elementary events underlying excitation–contraction coupling in heart muscle. Science 262:740–744

    Article  PubMed  CAS  Google Scholar 

  12. Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88:1491–1545

    Article  PubMed  CAS  Google Scholar 

  13. Cheng H, Wang S (2002) Calcium signaling between sarcolemmal calcium channels and ryanodine receptors in heart cells. Front Biosci 7:d1867–d1878

    Article  PubMed  CAS  Google Scholar 

  14. Chu A, Díaz-Muñoz M, Hawkes MJ et al (1990) Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel. Mol Pharmacol 37:735–741

    PubMed  CAS  Google Scholar 

  15. Terentyev D, Viatchenko-Karpinski S, Valdivia HH et al (2002) Luminal Ca2+ controls termination and refractory behavior of Ca2+-induced Ca2+ release in cardiac myocytes. Circ Res 91:414–420

    Article  PubMed  CAS  Google Scholar 

  16. Fernández-Velasco M, Rueda A, Rizzi N et al (2009) Increased Ca2+ sensitivity of the ryanodine receptor mutant RyR2R4496C underlies catecholaminergic polymorphic ventricular tachycardia. Circ Res 104:201–209, 12p following 209

    Article  PubMed  CAS  Google Scholar 

  17. Fill M, Copello J (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922

    PubMed  CAS  Google Scholar 

  18. Gillespie D, Fill M (2008) Intracellular calcium release channels mediate their own countercurrent: the ryanodine receptor case study. Biophys J 95:3706–3714

    Article  PubMed  CAS  Google Scholar 

  19. Gómez AM, Cheng H, Lederer WJ et al (1996) Ca2+ diffusion and sarcoplasmic reticulum transport both contribute to [Ca2+]i decline during Ca2+ sparks in rat ventricular myocytes. J Physiol (Lond) 496(Pt 2):575–581

    Google Scholar 

  20. Gómez AM, Rueda A, Sainte-Marie Y et al (2009) Mineralocorticoid modulation of cardiac ryanodine receptor activity is associated with downregulation of FK506-binding proteins. Circulation 119:2179–2187

    Article  PubMed  CAS  Google Scholar 

  21. González A, Kirsch WG, Shirokova N et al (2000) The spark and its ember: separately gated local components of Ca2+ release in skeletal muscle. J Gen Physiol 115:139–158

    Article  PubMed  Google Scholar 

  22. Hui CS, Besch HR, Bidasee KR (2004) Effects of ryanoids on spontaneous and depolarization-evoked calcium release events in frog muscle. Biophys J 87:243–255

    Article  PubMed  CAS  Google Scholar 

  23. Humerickhouse RA, Bidasee KR, Gerzon K et al (1994) High affinity C10-Oeq ester derivatives of ryanodine. Activator-selective agonists of the sarcoplasmic reticulum calcium release channel. J Biol Chem 269:30243–30253

    PubMed  CAS  Google Scholar 

  24. Jenden DJ, Fairhurst AS (1969) The pharmacology of ryanodine. Pharmacol Rev 21:1–25

    PubMed  CAS  Google Scholar 

  25. Kirsch WG, Uttenweiler D, Fink RH (2001) Spark- and ember-like elementary Ca2+ release events in skinned fibers of adult mammalian skeletal muscle. J Physiol (Lond) 537:379–389

    Article  CAS  Google Scholar 

  26. Lindsay AR, Tinker A, Williams AJ (1994) How does ryanodine modify ion handling in the sheep cardiac sarcoplasmic reticulum Ca2+-release channel? J Gen Physiol 104:425–447

    Article  PubMed  CAS  Google Scholar 

  27. Lipp P, Niggli E (1994) Modulation of Ca2+ release in cultured neonatal rat cardiac myocytes. Insight from subcellular release patterns revealed by confocal microscopy. Circ Res 74:979–990

    PubMed  CAS  Google Scholar 

  28. López-López JR, Shacklock PS, Balke CW et al (1995) Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science 268:1042–1045

    Article  PubMed  Google Scholar 

  29. Lukyanenko V, Gyorke S (1999) Ca2+ sparks and Ca2+ waves in saponin-permeabilized rat ventricular myocytes. J Physiol (Lond) 521(Pt 3):575–585

    Article  CAS  Google Scholar 

  30. Pereira L, Métrich M, Fernández-Velasco M et al (2007) The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes. J Physiol (Lond) 583:685–694

    Article  CAS  Google Scholar 

  31. Rousseau E, Smith JS, Meissner G (1987) Ryanodine modifies conductance and gating behavior of single Ca2+ release channel. Am J Physiol 253:C364–C368

    PubMed  CAS  Google Scholar 

  32. Shtifman A, Ward CW, Wang J et al (2000) Effects of imperatoxin A on local sarcoplasmic reticulum Ca2+ release in frog skeletal muscle. Biophys J 79:814–827

    Article  PubMed  CAS  Google Scholar 

  33. Sigalas C, Mayo-Martin MB, Jane DE et al (2009) Ca2+-calmodulin increases RyR2 open probability yet reduces ryanoid association with RyR2. Biophys J 97:1907–1916

    Article  PubMed  CAS  Google Scholar 

  34. Sobie EA, Song L, Lederer WJ (2005) Local recovery of Ca2+ release in rat ventricular myocytes. J Physiol (Lond) 565:441–447

    Article  CAS  Google Scholar 

  35. Tanna B, Welch W, Ruest L et al (2000) The interaction of a neutral ryanoid with the ryanodine receptor channel provides insights into the mechanisms by which ryanoid binding is modulated by voltage. J Gen Physiol 116:1–9

    Article  PubMed  CAS  Google Scholar 

  36. Tanna B, Welch W, Ruest L et al (2001) Ryanoid modification of the cardiac muscle ryanodine receptor channel results in relocation of the tetraethylammonium binding site. J Gen Physiol 117:385–394

    Article  PubMed  CAS  Google Scholar 

  37. Tanna B, Welch W, Ruest L et al (2002) Excess noise in modified conductance states following the interaction of ryanoids with cardiac ryanodine receptor channels. FEBS Lett 516:35–39

    Article  PubMed  CAS  Google Scholar 

  38. Tinker A, Sutko JL, Ruest L et al (1996) Electrophysiological effects of ryanodine derivatives on the sheep cardiac sarcoplasmic reticulum calcium-release channel. Biophys J 70:2110–2119

    Article  PubMed  CAS  Google Scholar 

  39. Tripathy A, Resch W, Xu L et al (1998) Imperatoxin A induces subconductance states in Ca2+ release channels (ryanodine receptors) of cardiac and skeletal muscle. J Gen Physiol 111:679–690

    Article  PubMed  CAS  Google Scholar 

  40. Tu Q, Velez P, Cortes-Gutierrez M et al (1994) Surface charge potentiates conduction through the cardiac ryanodine receptor channel. J Gen Physiol 103:853–867

    Article  PubMed  CAS  Google Scholar 

  41. Wang JP, Needleman DH, Hamilton SL (1993) Relationship of low affinity [3]ryanodine binding sites to high affinity sites on the skeletal muscle Ca2+ release channel. J Biol Chem 268:20974–20982

    PubMed  CAS  Google Scholar 

  42. Welch W, Ahmad S, Airey JA et al (1994) Structural determinants of high-affinity binding of ryanoids to the vertebrate skeletal muscle ryanodine receptor: a comparative molecular field analysis. Biochemistry 33:6074–6085

    Article  PubMed  CAS  Google Scholar 

  43. Yellen G (1984) Ionic permeation and blockade in Ca2+-activated K+ channels of bovine chromaffin cells. J Gen Physiol 84:157–186

    Article  PubMed  CAS  Google Scholar 

  44. Zhou J, Brum G, Gonzalez A et al (2003) Ca2+ sparks and embers of mammalian muscle. Properties of the sources. J Gen Physiol 122:95–114

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grants HL057832 and HL064210 to M.F., HL071741 to J.R.F., GM078665 to J.A.C., and Agence Nationale de la Recherche Grants ANR-09-GENO-012 and ANR-09-GENO-034 to A.M.G..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fill.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(GIF 102 kb)

High resolution image file (TIF 1997 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos-Franco, J., Gomez, A.M., Nani, A. et al. Ryanodol action on calcium sparks in ventricular myocytes. Pflugers Arch - Eur J Physiol 460, 767–776 (2010). https://doi.org/10.1007/s00424-010-0839-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0839-8

Keywords

Navigation