Advertisement

Sarcoplasmic reticulum Ca2+ depletion in adult skeletal muscle fibres measured with the biosensor D1ER

  • Ramón Jiménez-Moreno
  • Zhong-Ming Wang
  • María Laura Messi
  • Osvaldo DelbonoEmail author
Muscle Physiology

Abstract

The endoplasmic/sarcoplasmic reticulum (ER/SR) plays a crucial role in cytoplasmic signalling in a variety of cells. It is particularly relevant to skeletal muscle fibres, where this organelle constitutes the main Ca2+ store for essential functions, such as contraction. In this work, we expressed the cameleon biosensor D1ER by in vivo electroporation in the mouse flexor digitorum brevis (FDB) muscle to directly assess SR Ca2+ depletion in response to electrical and pharmacological stimulation. The main conclusions are: (1) D1ER is expressed in the SR of FDB fibres according to both di-8-(amino naphthyl ethenyl pyridinium) staining experiments and reductions in the Förster resonance energy transfer signal consequent to SR Ca2+ release; (2) the amplitude of D1ER citrine/cyan fluorescent protein (CFP) ratio evoked by either 4-chloro-m-cresol (4-CmC) or electrical stimulation is directly proportional to the basal citrine/CFP ratio, which indicates that SR Ca2+ modulates ryanodine-receptor-isoform-1-mediated SR Ca2+ release in the intact muscle fibre; (3) SR Ca2+ release, measured as D1ER citrine/CFP signal, is voltage-dependent and follows a Boltzmann function; and (4) average SR Ca2+ depletion is 20% in response to 4-CmC and 6.4% in response to prolonged sarcolemmal depolarization. These results indicate that significantly depleting SR Ca2+ content under physiological conditions is difficult.

Keywords

Skeletal muscle Calcium Sarcoplasmic reticulum 

Abbreviations

ER/SR

Endoplasmic/sarcoplasmic reticulum

FDB

Flexor digitorum brevis

SOCE

Store-operated Ca2+ entry

FRET

Förster resonance energy transfer

FVB

Freund virus B

CFP

Cyan fluorescent protein

YFP

Yellow fluorescent protein

RyR1

Ryanodine receptor isoform 1

4-CmC

4-Chloro-m-cresol

TEA

Tetraethylammonium

di-8-ANEPPS

Di-8-amino naphthyl ethenyl pyridinium

Notes

Acknowledgments

The present study was supported by grants from the National Institutes of Health/National Institute on Ageing (AG07157, AG33385 and AG15820) and the Muscular Dystrophy Association (MDA33149) to Osvaldo Delbono, and the Wake Forest University Claude D. Pepper Older Americans Independence Centre (P30-AG21332).

References

  1. 1.
    Allard B, Couchoux H, Pouvreau S, Jacquemond V (2006) Sarcoplasmic reticulum Ca2+ release and depletion fail to affect sarcolemmal ion channel activity in mouse skeletal muscle. J Physiol 575:69–81CrossRefPubMedGoogle Scholar
  2. 2.
    Bers DM (2002) Sarcoplasmic reticulum Ca release in intact ventricular myocytes. Front Biosci 7:d1697–d1711CrossRefPubMedGoogle Scholar
  3. 3.
    Conti A, Gorza L, Sorrentino V (1996) Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles. Biochem J 316(Pt 1):19–23PubMedGoogle Scholar
  4. 4.
    Copello JA, Barg S, Onoue H, Fleischer S (1997) Heterogeneity of Ca2+ gating of skeletal muscle and cardiac ryanodine receptors. Biophys J 73:141–156CrossRefPubMedGoogle Scholar
  5. 5.
    Day RN, Periasamy A, Schaufele F (2001) Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods 25:4–18CrossRefPubMedGoogle Scholar
  6. 6.
    Delbono O, Stefani E (1993) Calcium transients in single mammalian skeletal muscle fibres. J Physiol (Lond) 463:689–707Google Scholar
  7. 7.
    Demaurex N, Frieden M (2003) Measurements of the free luminal ER Ca(2+) concentration with targeted “cameleon” fluorescent proteins. Cell Calcium 34:109–119CrossRefPubMedGoogle Scholar
  8. 8.
    Difranco M, Neco P, Capote J, Meera P, Vergara JL (2006) Quantitative evaluation of mammalian skeletal muscle as a heterologous protein expression system. Protein Expr Purif 47:281–288CrossRefPubMedGoogle Scholar
  9. 9.
    DiFranco M, Quinonez M, DiGregorio DA, Kim AM, Pacheco R, Vergara JL (1999) Inverted double-gap isolation chamber for high-resolution calcium fluorimetry in skeletal muscle fibers. Pflugers Arch 438:412–418CrossRefPubMedGoogle Scholar
  10. 10.
    Dulhunty AF (1989) Feet, bridges, and pillars in triad junctions of mammalian skeletal muscle: their possible relationship to calcium buffers in terminal cisternae and T-tubules and to excitation–contraction coupling. J Membr Biol 109:73–83CrossRefPubMedGoogle Scholar
  11. 11.
    Franzini-Armstrong C, Protasi F, Ramesh V (1998) Comparative ultrastructure of Ca2+ release units in skeletal and cardiac muscle. Ann N Y Acad Sci 853:20–30CrossRefPubMedGoogle Scholar
  12. 12.
    Garcia J, Schneider MF (1993) Calcium transients and calcium release in rat fast-twitch skeletal muscle fibres. J Physiol (Lond) 463:709–728Google Scholar
  13. 13.
    Gomez J, Neco P, DiFranco M, Vergara JL (2006) Calcium release domains in mammalian skeletal muscle studied with two-photon imaging and spot detection techniques. J Gen Physiol 127:623–637CrossRefPubMedGoogle Scholar
  14. 14.
    Grynkiewicz G, Poenie M, Tsien RW (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. Role of specific intracellular signaling pathways. J Clin Invest 96:1473–1483Google Scholar
  15. 15.
    Gyorke S, Terentyev D (2008) Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc Res 77:245–255CrossRefPubMedGoogle Scholar
  16. 16.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free patches. Pflugers Arch 391:85–100CrossRefPubMedGoogle Scholar
  17. 17.
    Jimenez-Moreno R, Guerring R, Wang ZM, Delbono O (2006) Maximum sarcoplasmic reticulum releasable calcium in aging skeletal muscle. 50th Annual Meeting of the Biophysical SocietyGoogle Scholar
  18. 18.
    Jimenez-Moreno R, Wang ZM, Gerring R, Delbono O (2008) Sarcoplasmic reticulum Ca2+ release declines in muscle fibers from aging mice. Biophys J 94:3178–3188CrossRefPubMedGoogle Scholar
  19. 19.
    Jones PP, Jiang D, Bolstad J, Hunt DJ, Zhang L, Demaurex N, Chen SR (2008) Endoplasmic reticulum Ca2+ measurements reveal that the cardiac ryanodine receptor mutations linked to cardiac arrhythmia and sudden death alter the threshold for store-overload-induced Ca2+ release. Biochem J 412:171–178CrossRefPubMedGoogle Scholar
  20. 20.
    Kabbara AA, Allen DG (1999) Measurement of sarcoplasmic reticulum Ca2+ content in intact amphibian skeletal muscle fibres with 4-chloro-m-cresol. Cell Calcium 25:227–235CrossRefPubMedGoogle Scholar
  21. 21.
    Kurebayashi N, Ogawa Y (2001) Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J Physiol 533:185–199CrossRefPubMedGoogle Scholar
  22. 22.
    Lannergren J, Bruton JD, Westerblad H (1999) Vacuole formation in fatigued single muscle fibres from frog and mouse. J Muscle Res Cell Motil 20:19–32CrossRefPubMedGoogle Scholar
  23. 23.
    Launikonis BS, Rios E (2007) Store-operated Ca2+ entry during intracellular Ca2+ release in mammalian skeletal muscle. J Physiol 583:81–97CrossRefPubMedGoogle Scholar
  24. 24.
    Launikonis BS, Zhou J, Royer L, Shannon TR, Brum G, Rios E (2005) Confocal imaging of [Ca2+] in cellular organelles by SEER, shifted excitation and emission ratioing of fluorescence. J Physiol 567:523–543CrossRefPubMedGoogle Scholar
  25. 25.
    Lewis RS (2007) The molecular choreography of a store-operated calcium channel. Nature 446:284–287CrossRefPubMedGoogle Scholar
  26. 26.
    Narayanan N, Jones DL, Xu A, Yu JC (1996) Effects of aging on sarcoplasmic reticulum function and contraction duration in skeletal muscles of the rat. Am J Physiol 271:C1032–1040PubMedGoogle Scholar
  27. 27.
    Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13:521–530CrossRefPubMedGoogle Scholar
  28. 28.
    Palmer AE, Jin C, Reed JC, Tsien RY (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci U S A 101:17404–17409CrossRefPubMedGoogle Scholar
  29. 29.
    Pan Z, Yang D, Nagaraj RY, Nosek TA, Nishi M, Takeshima H, Cheng H, Ma J (2002) Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat Cell Biol 4:379–383CrossRefPubMedGoogle Scholar
  30. 30.
    Pape PC, Jong DS, Chandler WK (1995) Calcium release and its voltage dependence in frog cut muscle fibers equilibrated with 20 mM EGTA. J Gen Physiol 106:259–336CrossRefPubMedGoogle Scholar
  31. 31.
    Park KS, Poburko D, Wollheim CB, Demaurex N (2009) Amiloride derivatives induce apoptosis by depleting ER Ca(2+) stores in vascular endothelial cells. Br J Pharmacol 156:1296–1304CrossRefPubMedGoogle Scholar
  32. 32.
    Payne AM, Jimenez-Moreno R, Wang ZM, Messi ML, Delbono O (2009) Role of Ca2+, membrane excitability, and Ca2+ stores in failing muscle contraction with aging. Exp Gerontol 44:261–273CrossRefPubMedGoogle Scholar
  33. 33.
    Payne AM, Zheng Z, Gonzalez E, Wang ZM, Messi ML, Delbono O (2004) External Ca2+-dependent excitation–contraction coupling in a population of ageing mouse skeletal muscle fibres. J Physiol (Lond) 560(1):137–157CrossRefGoogle Scholar
  34. 34.
    Picht E, DeSantiago J, Blatter LA, Bers DM (2006) Cardiac alternans do not rely on diastolic sarcoplasmic reticulum calcium content fluctuations. Circ Res 99:740–748CrossRefPubMedGoogle Scholar
  35. 35.
    Piston DW, Kremers GJ (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32:407–414CrossRefPubMedGoogle Scholar
  36. 36.
    Rios E, Launikonis BS, Royer L, Brum G, Zhou J (2006) The elusive role of store depletion in the control of intracellular calcium release. J Muscle Res Cell Motil 27:337–350CrossRefPubMedGoogle Scholar
  37. 37.
    Rossi D, Sorrentino V (2002) Molecular genetics of ryanodine receptors Ca2+-release channels. Cell Calcium 32:307–319CrossRefPubMedGoogle Scholar
  38. 38.
    Rudolf R, Magalhaes PJ, Pozzan T (2006) Direct in vivo monitoring of sarcoplasmic reticulum Ca2+ and cytosolic cAMP dynamics in mouse skeletal muscle. J Cell Biol 173:187–193CrossRefPubMedGoogle Scholar
  39. 39.
    Shannon TR, Guo T, Bers DM (2003) Ca2+ scraps: local depletions of free [Ca2+] in cardiac sarcoplasmic reticulum during contractions leave substantial Ca2+ reserve. Circ Res 93:40–45CrossRefPubMedGoogle Scholar
  40. 40.
    Somlyo AV, Gonzalez-Serratos HG, Shuman H, McClellan G, Somlyo AP (1981) Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study. J Cell Biol 90:577–594CrossRefPubMedGoogle Scholar
  41. 41.
    Stern MD, Cheng H (2004) Putting out the fire: what terminates calcium-induced calcium release in cardiac muscle? Cell Calcium 35:591CrossRefPubMedGoogle Scholar
  42. 42.
    Stern MD, Song LS, Cheng H, Sham JS, Yang HT, Boheler KR, Rios E (1999) Local control models of cardiac excitation–contraction coupling. A possible role for allosteric interactions between ryanodine receptors. J Gen Physiol 113:469–489CrossRefPubMedGoogle Scholar
  43. 43.
    Stiber J, Hawkins A, Zhang ZS, Wang S, Burch J, Graham V, Ward CC, Seth M, Finch E, Malouf N, Williams RS, Eu JP, Rosenberg P (2008) STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 10:688–697CrossRefPubMedGoogle Scholar
  44. 44.
    Volpe P, Simon BJ (1991) The bulk of Ca2+ released to the myoplasm is free in the sarcoplasmic reticulum and does not unbind from calsequestrin. FEBS Lett 278:274–278CrossRefPubMedGoogle Scholar
  45. 45.
    Wang ZM, Messi ML, Delbono O (1999) Patch-clamp recording of charge movement, Ca2+ current and Ca2+ transients in adult skeletal muscle fibers. Biophys J 77:2709–2716CrossRefPubMedGoogle Scholar
  46. 46.
    Wang Z-M, Messi ML, Delbono O (2002) Sustained overexpression of IGF-1 prevents age-dependent decrease in charge movement and intracellular calcium in mouse skeletal muscle. Biophys J 82:1338–1344CrossRefPubMedGoogle Scholar
  47. 47.
    Woods CE, Novo D, DiFranco M, Capote J, Vergara JL (2005) Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres. J Physiol 568:867–880CrossRefPubMedGoogle Scholar
  48. 48.
    Woods CE, Novo D, DiFranco M, Vergara JL (2004) The action potential-evoked sarcoplasmic reticulum calcium release is impaired in mdx mouse muscle fibres. J Physiol 557:59–75CrossRefPubMedGoogle Scholar
  49. 49.
    Xi Q, Adebiyi A, Zhao G, Chapman KE, Waters CM, Hassid A, Jaggar JH (2008) IP3 constricts cerebral arteries via IP3 receptor-mediated TRPC3 channel activation and independently of sarcoplasmic reticulum Ca2+ release. Circ Res 102:1118–1126CrossRefPubMedGoogle Scholar
  50. 50.
    Zima AV, Picht E, Bers DM, Blatter LA (2008) Termination of cardiac Ca2+ sparks: role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion. Circ Res 103:e105–e115CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ramón Jiménez-Moreno
    • 1
    • 3
  • Zhong-Ming Wang
    • 1
  • María Laura Messi
    • 1
  • Osvaldo Delbono
    • 1
    • 2
    • 4
    Email author
  1. 1.Department of Internal Medicine, Section on Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston-SalemUSA
  2. 2.Molecular Medicine and Neuroscience ProgramsWake Forest University School of MedicineWinston-SalemUSA
  3. 3.Department of Neurobiology and AnatomyWake Forest University School of MedicineWinston-SalemUSA
  4. 4.Wake Forest University School of MedicineWinston-SalemUSA

Personalised recommendations