Skip to main content

Advertisement

Log in

Angiotensin II type 1 receptor mediates partially hyposmotic-induced increase of I Ks current in guinea pig atrium

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

A repolarizing conduction in the heart augmented by hyposmotic or mechanically induced membrane stretch is the slow component of delayed rectifier K+ current (I Ks). I Ks upregulation is recognized as a factor promoting appearance of atrial fibrillation (AF) since gain-of-function mutations of the channel genes have been detected in congenital AF. Mechanical stretch activates angiotensin II type 1 (AT1) receptor in the absence of its physiological ligand angiotensin II. We investigated the functional role of AT1 receptor in I Ks enhancement in hyposmotically challenged guinea pig atrial myocytes using the whole-cell patch-clamp method. In atrial myocytes exposed to hyposmotic solution with osmolality decreased to 70% of the physiological level, I Ks was enhanced by 84.1%, the duration of action potential at 90% repolarization (APD90) was decreased by 16.8%, and resting membrane potential was depolarized (+4.9 mV). The hyposmotic-induced effects on I Ks and APD90 were significantly attenuated by specific AT1 receptor antagonist candesartan (1 and 5 μM). Pretreatment of atrial myocytes with protein tyrosine kinase inhibitors tyrphostin A23 and A25 suppressed but the presence of tyrosine phosphatase inhibitor orthovanadate augmented hyposmotic stimulation of I Ks. The above results implicate AT1 receptor and tyrosine kinases in the hyposmotic modulation of atrial I Ks and suggest acute antiarrhythmic properties of AT1 antagonists in the settings of stretch-related atrial tachyarrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allessie M, Ausma J, Schotten U (2002) Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 54:230–246

    Article  PubMed  CAS  Google Scholar 

  2. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  PubMed  CAS  Google Scholar 

  3. Boyd DF, Mathie A (2002) Inhibition of the potassium current IKSO, in cerebellar granule cells, by the inhibitors of MEK1 activation, PD 98059 and U 0126. Neuropharmacology 42:221–228

    Article  PubMed  CAS  Google Scholar 

  4. Browe DM, Baumgarten CM (2003) Stretch of β1 integrin activates an outwardly rectifying chloride current via FAK and Src in rabbit ventricular myocytes. J Gen Physiol 122:689–702

    Article  PubMed  CAS  Google Scholar 

  5. Caballero R, Delpón E, Valenzuela C et al (2001) Direct effects of candesartan and eprosartan on human cloned potassium channels involved in cardiac repolarization. Mol Pharmacol 59:825–836

    PubMed  CAS  Google Scholar 

  6. Calkins H, el-Atassi R, Kalbfleisch S et al (1992) Effects of an acute increase in atrial pressure on atrial refractoriness in humans. Pacing Clin Electrophysiol 15:1674–1680

    Article  PubMed  CAS  Google Scholar 

  7. Chen YH, Xu SJ, Bendahhou S et al (2003) KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299:251–254

    Article  PubMed  CAS  Google Scholar 

  8. Cohen DM (2005) SRC family kinases in cell volume regulation. Am J Physiol Cell Physiol 288:C483–493

    Article  PubMed  CAS  Google Scholar 

  9. Collard CD, Gelman S (2001) Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 94:1133–1138

    Article  PubMed  CAS  Google Scholar 

  10. Davis MJ, Wu X, Nurkiewicz TR et al (2001) Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol 281:H1835–1862

    PubMed  CAS  Google Scholar 

  11. Ding WG, Toyoda F, Matsuura H (2004) Regulation of cardiac I Ks potassium current by membrane phosphatidylinositol 4, 5-bisphosphate. J Biol Chem 279:50726–50734

    Article  PubMed  CAS  Google Scholar 

  12. Dostal DE (2000) The cardiac renin-angiotensin system: novel signaling mechanisms related to cardiac growth and function. Regul Pept 91:1–11

    Article  PubMed  CAS  Google Scholar 

  13. Du XL, Gao Z, Lau CP et al (2004) Differential effects of tyrosine kinase inhibitors on volume-sensitive chloride current in human atrial myocytes: evidence for dual regulation by Src and EGFR kinases. J Gen Physiol 123:427–439

    Article  PubMed  CAS  Google Scholar 

  14. Du XY, Sorota S (1997) Cardiac swelling-induced chloride current depolarizes canine atrial myocytes. Am J Physiol Heart Circ Physiol 41:H1904–H1916

    Google Scholar 

  15. Ehrlich JR, Hohnloser SH, Nattel S (2006) Role of angiotensin system and effects of its inhibition in atrial fibrillation: clinical and experimental evidence. Eur Heart J 27:512–518

    Article  PubMed  CAS  Google Scholar 

  16. Grunnet M, Jespersen T, MacAulay N et al (2003) KCNQ1 channels sense small changes in cell volume. J Physiol 549:419–427

    Article  PubMed  CAS  Google Scholar 

  17. Hagiwara N, Masuda H, Shoda M et al (1992) Stretch-activated anion currents of rabbit cardiac myocytes. J Physiol 456:285–302

    PubMed  CAS  Google Scholar 

  18. Hamill OP, Marty A, Neher E et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  19. Harada K, Komuro I, Hayashi D et al (1998) Angiotensin II type 1a receptor is involved in the occurrence of reperfusion arrhythmias. Circulation 97:315–317

    PubMed  CAS  Google Scholar 

  20. Henry WL, Morganroth J, Pearlman AS et al (1976) Relation between echocardiographically determined left atrial size and atrial fibrillation. Circulation 53:273–279

    PubMed  CAS  Google Scholar 

  21. Kocic I, Hirano Y, Hiraoka M (2001) Ionic basis for membrane potential changes induced by hypoosmotic stress in guinea-pig ventricular myocytes. Cardiovasc Res 51:59–70

    Article  PubMed  CAS  Google Scholar 

  22. Kubota T, Horie M, Takano M et al (2002) Role of KCNQ1 in the cell swelling-induced enhancement of the slowly activating delayed rectifier K+ current. Jpn J Physiol 52:31–39

    Article  PubMed  CAS  Google Scholar 

  23. Li GR, Feng J, Yue L et al (1996) Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ Res 78:689–696

    PubMed  CAS  Google Scholar 

  24. Malhotra R, Sadoshima J, Brosius FC 3rd et al (1999) Mechanical stretch and angiotensin II differentially upregulate the renin-angiotensin system in cardiac myocytes in vitro. Circ Res 85:137–146

    PubMed  CAS  Google Scholar 

  25. Marrero MB, Schieffer B, Paxton WG et al (1995) Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375:247–250

    Article  PubMed  CAS  Google Scholar 

  26. Missan S, Lindsdell P, McDonald TF (2008) Involvement of tyrosine kinase in the hyposmotic stimulation of I Ks in guinea-pig ventricular myocytes. Pflügers Arch 456(3):489–500

    Article  PubMed  CAS  Google Scholar 

  27. Missan S, Linsdell P, McDonald TF (2006) Role of kinases and G-proteins in the hyposmotic stimulation of cardiac IKs. Biochim Biophys Acta 1758:1641–1652

    Article  PubMed  CAS  Google Scholar 

  28. Nakashima H, Kumagai K, Urata H et al (2000) Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation. Circulation 101:2612–2617

    PubMed  CAS  Google Scholar 

  29. Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415:219–226

    Article  PubMed  CAS  Google Scholar 

  30. Nazir SA, Lab MJ (1996) Mechanoelectric feedback and atrial arrhythmias. Cardiovasc Res 32:52–61

    PubMed  CAS  Google Scholar 

  31. Otway R, Vandenberg JI, Guo G et al (2007) Stretch-sensitive KCNQ1 mutation A link between genetic and environmental factors in the pathogenesis of atrial fibrillation? J Am Coll Cardiol 49:578–586

    Article  PubMed  CAS  Google Scholar 

  32. Pedersen SF, Beisner KH, Hougaard C et al (2002) Rho family GTP binding proteins are involved in the regulatory volume decrease process in NIH3T3 mouse fibroblasts. J Physiol 541:779–796

    Article  PubMed  CAS  Google Scholar 

  33. Ravelli F, Allessie M (1997) Effects of atrial dilatation on refractory period and vulnerability to atrial fibrillation in the isolated Langendorff-perfused rabbit heart. Circulation 96:1686–1695

    PubMed  CAS  Google Scholar 

  34. Ravens U (2003) Mechano-electric feedback and arrhythmias. Prog Biophys Mol Biol 82:255–266

    Article  PubMed  Google Scholar 

  35. Ren Z, Raucci FJ, Browe DM et al (2008) Regulation of swelling-activated Cl- current by angiotensin II signaling and NADPH oxidase in rabbit ventricle. Cardiovasc Res 77:73–80

    Article  PubMed  CAS  Google Scholar 

  36. Richards EM, Lu D, Zelezna B et al (1993) Inhibition of central angiotensin responses by angiotensin type-1 receptor antibody. Hypertension 21:1062–1065

    PubMed  CAS  Google Scholar 

  37. Robinson MJ, Cheng M, Khokhlatchev A et al (1996) Contributions of the mitogen-activated protein (MAP) kinase backbone and phosphorylation loop to MEK specificity. J Biol Chem 271:29734–29739

    Article  PubMed  CAS  Google Scholar 

  38. Roos K (1986) Length, width, and volume changes in osmotically stressed myocytes. Am J Physiol Heart Circ Physiol 251:H1373–H1378

    CAS  Google Scholar 

  39. Sadoshima J, Qiu Z, Morgan JP et al (1996) Tyrosine kinase activation is an immediate and essential step in hypotonic cell swelling-induced ERK activation and c-fos gene expression in cardiac myocytes. EMBO J 15:5535–5546

    PubMed  CAS  Google Scholar 

  40. Sakaguchi M, Matsuura H, Ehara T (1997) Swelling-induced Cl- current in guinea-pig atrial myocytes: inhibition by glibenclamide. J Physiol 505(1):41–52

    Article  PubMed  CAS  Google Scholar 

  41. Sanfilippo AJ, Abascal VM, Sheehan M et al (1990) Atrial enlargement as a consequence of atrial fibrillation. A prospective echocardiographic study. Circulation 82:792–797

    PubMed  CAS  Google Scholar 

  42. Sasaki N, Mitsuiye T, Wang Z et al (1994) Increase of the delayed rectifier K+ and Na+-K+ pump currents by hypotonic solutions in guinea pig cardiac myocytes. Circ Res 75:887–895

    PubMed  CAS  Google Scholar 

  43. Schmieder RE, Hilgers KF, Schlaich MP et al (2007) Renin-angiotensin system and cardiovascular risk. Lancet 369:1208–1219

    Article  PubMed  CAS  Google Scholar 

  44. Torsoni AS, Marin TM, Velloso LA et al (2005) RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. Am J Physiol Heart Circ Physiol 289:H1488–H1496

    Article  PubMed  CAS  Google Scholar 

  45. Touyz RM, Schiffrin EL (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52:639–672

    PubMed  CAS  Google Scholar 

  46. Vandenberg JI, Bett GCL, Powell T (1997) Contribution of a swelling-activated chloride current to changes in the cardiac action potential. Am J Physiol Cell Physiol 42:C541–C547

    Google Scholar 

  47. Vandenberg JI, Rees SA, Wright AR et al (1996) Cell swelling and ion transport pathways in cardiac myocytes. Cardiovasc Res 32:85–97

    PubMed  CAS  Google Scholar 

  48. Wang Z, Fermini B, Nattel S (1994) Rapid and slow components of delayed rectifier current in human atrial myocytes. Cardiovasc Res 28(10):1540–1546

    Article  PubMed  CAS  Google Scholar 

  49. Wang Z, Mitsuiye T, Noma A (1996) Cell distension-induced increase of the delayed rectifier K+ current in guinea pig ventricular myocytes. Circ Res 78:466–474

    PubMed  CAS  Google Scholar 

  50. Wold LE, Relling DP, Duan J et al (2002) Abrogated leptin-induced cardiac contractile response in ventricular myocytes under spontaneous hypertension: role of Jak/STAT pathway. Hypertension 39:69–74

    Article  PubMed  CAS  Google Scholar 

  51. Yasuda N, Miura S-I, Akazawa H et al (2008) Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep 9(2):179–186

    Article  PubMed  CAS  Google Scholar 

  52. Zankov DP, Omatsu-Kanbe M, Isono T et al (2006) Angiotensin II potentiates the slow component of delayed rectifier K+ current via the AT1 receptor in guinea pig atrial myocytes. Circulation 113:1278–1286

    Article  PubMed  CAS  Google Scholar 

  53. Zhou YY, Yao JA, Tseng GN (1997) Role of tyrosine kinase activity in cardiac slow delayed rectifier channel modulation by cell swelling. Pflügers Arch 433:750–757

    Article  PubMed  CAS  Google Scholar 

  54. Zou Y, Akazawa H, Qin Y et al (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6:499–506

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Japanese Society for the Promotion of Science, research grant no 19-07209.

Disclosures

The authors have no potential conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Horie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zankov, D.P., Toyoda, F., Omatsu-Kanbe, M. et al. Angiotensin II type 1 receptor mediates partially hyposmotic-induced increase of I Ks current in guinea pig atrium. Pflugers Arch - Eur J Physiol 458, 837–849 (2009). https://doi.org/10.1007/s00424-009-0669-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0669-8

Keywords

Navigation