Skip to main content
Log in

Trifluoperazine: a rynodine receptor agonist

  • Cardiovascular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Trifluoperazine (TFP), a phenothiazine, is a commonly used antipsychotic drug whose therapeutic effects are attributed to its central anti-adrenergic and anti-dopaminergic actions. However, TFP is also a calmodulin (CaM) antagonist and alters the Ca2+ binding properties of calsequestrin (CSQ). The CaM and CSQ proteins are known modulators of sarcoplasmic reticulum (SR) Ca2+ release in ventricular myocytes. We explored TFP actions on cardiac SR Ca2+ release in cells and single type-2 ryanodine receptor (RyR2) channel activity in bilayers. In intact and permeabilized ventricular myocytes, TFP produced an initial activation of RyR2-mediated SR Ca2+ release and over time depleted SR Ca2+ content. At the single channel level, TFP or nortryptiline (NRT; a tricyclic antidepressant also known to modify CSQ Ca2+ binding) increased the open probability (Po) of CSQ-free channels with an EC50 of 5.2 µM or 8.9 µM (respectively). This Po increase was due to elevated open event frequency at low drug concentrations while longer mean open events sustained Po at higher drug concentrations. Activation of RyR2 by TFP occurred in the presence or absence of CaM. TFP may also inhibit SR Ca uptake as well as increase RyR2 opening. Our results suggest TFP and NRT can alter RyR2 function by interacting with the channel protein directly, independent of its actions on CSQ or CaM. This direct action may contribute to the clinical adverse cardiac side effects associated with these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arai M, Otsu K, MacLennan DH, Alpert NR, Periasamy M (1991) Effect of thyroid hormone on the expression of mRNA encoding sarcoplasmic reticulum proteins. Circ Res 69(2):266–276

    PubMed  CAS  Google Scholar 

  2. Beard NA, Casarotto MG, Wei L, Varsanyi M, Laver DR, Dulhunty AF (2005) Regulation of ryanodine receptors by calsequestrin: effect of high luminal Ca2+ and phosphorylation. Biophys J 88(5):3444–3454

    Article  PubMed  CAS  Google Scholar 

  3. Bers DM (2001) Excitation–contraction coupling and cardiac contractile force. Kluwer, Norwell, MA USA

    Google Scholar 

  4. Buckley NA, Sanders P (2000) Cardiovascular adverse effects of antipsychotic drugs. Drug Saf 23(3):215–228

    Article  PubMed  CAS  Google Scholar 

  5. Cachia PJ, Van Eyk J, Ingraham RH, McCubbin WD, Kay CM, Hodges RS (1986) Calmodulin and troponin C: a comparative study of the interaction of mastoparan and troponin I inhibitory peptide [104–115]. Biochemistry 25(12):3553–3562

    Article  PubMed  CAS  Google Scholar 

  6. Chamberlain BK, Volpe P, Fleischer S (1984) Calcium-induced calcium release from purified cardiac sarcoplasmic reticulum vesicles. General characteristics. J Biol Chem 259(12):7540–7546

    PubMed  CAS  Google Scholar 

  7. Choi SY, Koh YS, Jo SH (2005) Inhibition of human ether-a-go-go-related gene K+ channel and IKr of guinea pig cardiomyocytes by antipsychotic drug trifluoperazine. J Pharmacol Exp Ther 313(2):888–895

    Article  PubMed  CAS  Google Scholar 

  8. di Barletta MR, Viatchenko-Karpinski S, Nori A, Memmi M, Terentyev D, Turcato F, Valle G, Rizzi N, Napolitano C, Gyorke S, Volpe P, Priori SG (2006) Clinical phenotype and functional characterization of CASQ2 mutations associated with catecholaminergic polymorphic ventricular tachycardia. Circulation 114(10):1012–1019

    Article  PubMed  Google Scholar 

  9. Eisner DA, Trafford AW, Diaz ME, Overend CL, O'Neill SC (1998) The control of Ca release from the cardiac sarcoplasmic reticulum: regulation versus autoregulation. Cardiovasc Res 38(3):589–604

    Article  PubMed  CAS  Google Scholar 

  10. Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82(4):893–922

    PubMed  CAS  Google Scholar 

  11. Fliegel L, Ohnishi M, Carpenter MR, Khanna VK, Reithmeier RA, MacLennan DH (1987) Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc Natl Acad Sci U S A 84(5):1167–1171

    Article  PubMed  CAS  Google Scholar 

  12. Fruen BR, Bardy JM, Byrem TM, Strasburg GM, Louis CF (2000) Differential Ca(2+) sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am J Physiol Cell Physiol 279(3):C724–C733

    PubMed  CAS  Google Scholar 

  13. Fujii J, Willard HF, MacLennan DH (1990) Characterization and localization to human chromosome 1 of human fast-twitch skeletal muscle calsequestrin gene. Somat Cell Mol Genet 16(2):185–189

    Article  PubMed  CAS  Google Scholar 

  14. Gyorke I, Hester N, Jones LR, Gyorke S (2004) The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J 86(4):2121–2128

    Article  PubMed  Google Scholar 

  15. Gyorke S, Terentyev D (2008) Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc Res 77(2):245–255

    Article  PubMed  CAS  Google Scholar 

  16. Ho MM, Scales DJ, Inesi G (1983) The effect of trifluoroperazine on the sarcoplasmic reticulum membrane. Biochim Biophys Acta 730(1):64–70

    Article  PubMed  CAS  Google Scholar 

  17. Hull BE, Lockwood TD (1986) Toxic cardiomyopathy: the effect of antipsychotic–antidepressant drugs and calcium on myocardial protein degradation and structural integrity. Toxicol Appl Pharmacol 86(2):308–324

    Article  PubMed  CAS  Google Scholar 

  18. Jusic N, Lader M (1994) Post-mortem antipsychotic drug concentrations and unexplained deaths. Br J Psychiatry 165(6):787–791

    Article  PubMed  CAS  Google Scholar 

  19. Kelly HG, Fay JE, Laverty SG (1963) Thioridazine hydrochloride (Mellaril): its effect on the electrocardiogram and a report of two fatalities with electrocardiographic abnormalities. Can Med Assoc J 89:546–554

    PubMed  CAS  Google Scholar 

  20. Knollmann BC, Chopra N, Hlaing T, Akin B, Yang T, Ettensohn K, Knollmann BE, Horton KD, Weissman NJ, Holinstat I, Zhang W, Roden DM, Jones LR, Franzini-Armstrong C, Pfeifer K (2006) Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2+ release, and catecholaminergic polymorphic ventricular tachycardia. J Clin Invest 116(9):2510–2520

    PubMed  CAS  Google Scholar 

  21. Meissner G, Henderson JS (1987) Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem 262(7):3065–3073

    PubMed  CAS  Google Scholar 

  22. Nau C, Seaver M, Wang SY, Wang GK (2000) Block of human heart hH1 sodium channels by amitriptyline. J Pharmacol Exp Ther 292(3):1015–1023

    PubMed  CAS  Google Scholar 

  23. Pancrazio JJ, Kamatchi GL, Roscoe AK, Lynch C 3rd (1998) Inhibition of neuronal Na+ channels by antidepressant drugs. J Pharmacol Exp Ther 284(1):208–214

    PubMed  CAS  Google Scholar 

  24. Park IY, Kim EJ, Park H, Fields K, Dunker AK, Kang C (2005) Interaction between cardiac calsequestrin and drugs with known cardiotoxicity. Mol Pharmacol 67(1):97–104

    Article  PubMed  CAS  Google Scholar 

  25. Picht E, Zima AV, Blatter LA, Bers DM (2007) SparkMaster: automated calcium spark analysis with ImageJ. Am J Physiol Cell Physiol 293(3):C1073–C1081

    Article  PubMed  CAS  Google Scholar 

  26. Qin J, Valle G, Nani A, Nori A, Rizzi N, Priori SG, Volpe P, Fill M (2008) Luminal Ca2+ regulation of single cardiac ryanodine receptors: insights provided by calsequestrin and its mutants. J Gen Physiol 131(4):325–334

    Article  PubMed  CAS  Google Scholar 

  27. Rubenstein DS, Lipsius SL (1995) Premature beats elicit a phase reversal of mechanoelectrical alternans in cat ventricular myocytes. A possible mechanism for reentrant arrhythmias. Circulation 91(1):201–214

    PubMed  CAS  Google Scholar 

  28. Rudorfer MV, Robins E (1981) Fatal nortriptyline overdose, plasma levels and in vivo methylation of tricyclic antidepressants. Am J Psychiatry 138(7):982–983

    PubMed  CAS  Google Scholar 

  29. Scott BT, Simmerman HK, Collins JH, Nadal-Ginard B, Jones LR (1988) Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J Biol Chem 263(18):8958–8964

    PubMed  CAS  Google Scholar 

  30. Shannon TR, Guo T, Bers DM (2003) Ca2+ scraps: local depletions of free [Ca2+] in cardiac sarcoplasmic reticulum during contractions leave substantial Ca2+ reserve. Circ Res 93(1):40–45

    Article  PubMed  CAS  Google Scholar 

  31. Smith JS, Rousseau E, Meissner G (1989) Calmodulin modulation of single sarcoplasmic reticulum Ca2+-release channels from cardiac and skeletal muscle. Circ Res 64(2):352–359

    PubMed  CAS  Google Scholar 

  32. Sorensen B, Kragh-Sorensen P, Larsen NE, Hvidberg EF (1978) The practical significance of nortriptyline plasma control. A prospective evaluation under routine conditions in endogenous depression. Psychopharmacology (Berl) 59(1):35–39

    Article  CAS  Google Scholar 

  33. Treves S, Vilsen B, Chiozzi P, Andersen JP, Zorzato F (1992) Molecular cloning, functional expression and tissue distribution of the cDNA encoding frog skeletal muscle calsequestrin. Biochem J 283(Pt 3):767–772

    PubMed  CAS  Google Scholar 

  34. Tripathy A, Xu L, Mann G, Meissner G (1995) Calmodulin activation and inhibition of skeletal muscle Ca2+ release channel (ryanodine receptor). Biophys J 69(1):106–119

    Article  PubMed  CAS  Google Scholar 

  35. Tu Q, Velez P, Cortes-Gutierrez M, Fill M (1994) Surface charge potentiates conduction through the cardiac ryanodine receptor channel. J Gen Physiol 103(5):853–867

    Article  PubMed  CAS  Google Scholar 

  36. Vandonselaar M, Hickie RA, Quail JW, Delbaere LT (1994) Trifluoperazine-induced conformational change in Ca(2+)-calmodulin. Nat Struct Biol 1(11):795–801

    Article  PubMed  CAS  Google Scholar 

  37. Weiss B (1983) Techniques for measuring the interaction of drugs with calmodulin. Methods Enzymol 102:171–184

    Article  PubMed  CAS  Google Scholar 

  38. Witcher DR, Kovacs RJ, Schulman H, Cefali DC, Jones LR (1991) Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem 266(17):11144–11152

    PubMed  CAS  Google Scholar 

  39. Zima AV, Picht E, Bers DM, Blatter LA (2008a) Partial inhibition of sarcoplasmic reticulum Ca release evokes long-lasting Ca release events in ventricular myocytes: role of luminal Ca in termination of ca release. Biophys J 94(5):1867–1879

    Article  CAS  Google Scholar 

  40. Zima AV, Qin J, Fill M, Blatter LA (2008b) Tricyclic antidepressant amitriptyline alters sarcoplasmic reticulum calcium handling in ventricular myocytes. Am J Physiol Heart Circ Physiol 295(5):H2008–H2116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grants HL80101 & HL62231 (to LAB), HL57832 & AR54098 (to MF), and an American Heart Association Grant AHA0530309Z (to AVZ). We are very thankful to Drs. Pompeo Volpe and Alessandra Nori for kindly providing the CSQ protein. We would also like to thank Dr. Josefina Ramos-Franco and Ms. Alma Nani for their expert assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, J., Zima, A.V., Porta, M. et al. Trifluoperazine: a rynodine receptor agonist. Pflugers Arch - Eur J Physiol 458, 643–651 (2009). https://doi.org/10.1007/s00424-009-0658-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0658-y

Keywords

Navigation