Skip to main content
Log in

Excitation-contraction coupling in skeletal muscle fibers from adult domestic honeybee

  • Signaling and Cell Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Excitation–contraction coupling was characterized in enzymatically isolated adult honeybee skeletal muscle fibers. The voltage-dependent Ca2+ current (I Ca) underlies action potential (AP) depolarization phase in honeybee muscle. A single AP leads to rapid and transient cytoplasmic Ca2+ increase (“Ca2+ transient”), which afterwards returns toward baseline following an exponential time course. Trains of APs elicit a staircase increase of Ca2+, as a result of multiple Ca2+ transient summation. Surprisingly, the nifedipine-sensitive I Ca is blocked by allethrin, a pyrethroid insecticide, revealing myotoxic effects of this neurotoxic insecticide for honeybees. Ca2+ transients are under the control of Ca2+ entry through voltage-activated Ca2+ channels. Indeed, Ca2+ transient amplitude depends on extracellular Ca2+ concentration, and bell-shaped relationships are obtained for both I Ca integral and the Ca2+ transient peak in response to depolarizations of increasing amplitude. The slow inactivation kinetics of I Ca induces long-lasting Ca2+ transients that tend to reach a plateau and to return toward a resting level after the end of the stimulation. A Ca2+-induced Ca2+ release mechanism is suggested by two results. First, caffeine (≥5 mM) and 4-cmc (>0.4 mM), two activators of the sarcoplasmic reticulum Ca2+ release channels (CRCs), induce Ca2+ elevations in the absence of extracellular Ca2+. Second, ryanodine (5 µM) a plant alkaloid that binds specifically to CRCs, depresses voltage-induced Ca2+ transients. Honeybee muscle fibers represent a valuable model to study invertebrate excitation–contraction coupling and insecticide myotoxicity toward useful insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Almers W, Fink R, Palade PT (1981) Calcium depletion in frog muscle tubules: the decline of calcium current under maintained depolarization. J Physiol 312:177–207

    PubMed  CAS  Google Scholar 

  2. Almers W, Palade PT (1981) Slow calcium and potassium currents across frog muscle membrane: measurements with a vaseline-gap technique. J Physiol 312:159–76

    PubMed  CAS  Google Scholar 

  3. Andronache Z, Ursu D, Lehnert S, Freichel M, Flockerzi V, Melzer W (2007) The auxiliary subunit gamma 1 of the skeletal muscle L-type Ca2+ channel is an endogenous Ca2+ antagonist. Proc Natl Acad Sci U S A 104:17885–90

    Article  PubMed  CAS  Google Scholar 

  4. Araque A, Clarac F, Buno W (1994) P-type Ca2+ channels mediate excitatory and inhibitory synaptic transmitter release in crayfish muscle. Proc Natl Acad Sci U S A 91:4224–4228

    Article  PubMed  CAS  Google Scholar 

  5. Ashcroft FM, Stanfield PR (1982) Calcium and potassium currents in muscle fibres of an insect (Carausius morosus). J Physiol 323:93–115

    PubMed  CAS  Google Scholar 

  6. Ashcroft FM, Stanfield PR (1982) Calcium inactivation in skeletal muscle fibres of the stick insect, Carausius morosus. J Physiol 330:349–72

    PubMed  CAS  Google Scholar 

  7. Ashley CC, Ridgway EB (1970) On the relationships between membrane potential, calcium transient and tension in single barnacle muscle fibres. J Physiol 209:105–30

    PubMed  CAS  Google Scholar 

  8. Attwell D, Wilson M (1980) Behaviour of the rod network in the tiger salamander retina mediated by membrane properties of individual rods. J Physiol 309:287–315

    PubMed  CAS  Google Scholar 

  9. Baumann O (2000) Distribution of ryanodine receptor Ca(2+) channels in insect photoreceptor cells. J Comp Neurol 421:347–61

    Article  PubMed  CAS  Google Scholar 

  10. Baumann O, Kitazawa T, Somlyo AP (1990) Laser confocal scanning microscopy of the surface membrane/T-tubular system and the sarcoplasmic reticulum in insect striated muscle stained with DilC18(3). J Struct Biol 105:154–61

    Article  PubMed  CAS  Google Scholar 

  11. Bloomquist JR (1996) Ion channels as targets for insecticides. Annu Rev Entomol 41:163–90

    Article  PubMed  CAS  Google Scholar 

  12. Carroll SL, Klein MG, Schneider MF (1997) Decay of calcium transients after electrical stimulation in rat fast- and slow-twitch skeletal muscle fibres. J Physiol 501(Pt 3):573–88

    Article  PubMed  CAS  Google Scholar 

  13. Castellote J, Araque A, Buno W (1997) Sustained GABA-induced regulation of the L-type Ca2+ conductance in crustacean muscle fibers. Pflügers Archiv European Journal of Physiology 434:272–279

    Article  PubMed  CAS  Google Scholar 

  14. Cheng NQ, Deatherage JF (1989) Three-dimensional reconstruction of the Z disk of sectioned bee flight muscle. J Cell Biol 108:1761–74

    Article  PubMed  CAS  Google Scholar 

  15. Collet C, Belzunces L (2007) Excitable properties of adult skeletal muscle fibres from the honeybee Apis mellifera. J Exp Biol 210:454–464

    Article  PubMed  CAS  Google Scholar 

  16. Collet C, Csernoch L, Jacquemond V (2003) Intramembrane charge movement and L-type calcium current in skeletal muscle fibers isolated from control and mdx mice. Biophys J 84:251–65

    Article  PubMed  CAS  Google Scholar 

  17. Collet C, Jacquemond V (2002) Sustained release of calcium elicited by membrane depolarization in ryanodine-injected mouse skeletal muscle fibers. Biophys J 82:1509–23

    Article  PubMed  CAS  Google Scholar 

  18. Cordova D, Benner EA, Saeher MD, Rauh JJ, Sopa JS, Lahm GP, Selby TP, Stevenson TM, Caspar T, Ragghianti JJ, Gutteridge S, Rhoades DF, Wu LH, Smith RM, Tao Y(2007) Anthranilic diamides: a new class of highly potent ryanodine receptor activators. Biophys 87A–87A

  19. Delay M, Ribalet B, Vergara J (1986) Caffeine potentiation of calcium release in frog skeletal muscle fibres. J Physiol 375:535–59

    PubMed  CAS  Google Scholar 

  20. Di Biase V, Franzini-Armstrong C (2005) Evolution of skeletal type e-c coupling: a novel means of controlling calcium delivery. J Cell Biol 171:695–704

    Article  PubMed  Google Scholar 

  21. Donaldson PL, Beam KG (1983) Calcium currents in a fast-twitch skeletal muscle of the rat. J Gen Physiol 82:449–68

    Article  PubMed  CAS  Google Scholar 

  22. Ebbinghaus-Kintscher U, Luemmen P, Lobitz N, Schulte T, Funke C, Fischer R, Masaki T, Yasokawa N, Tohnishi M (2006) Phthalic acid diamides activate ryanodine-sensitive Ca2+ release channels in insects. Cell Calcium 39:21–33

    PubMed  CAS  Google Scholar 

  23. Escamilla J, Farías J, García R, García M, Sánchez J (2001) Long-term depolarization regulates the a1s subunit of skeletal muscle Ca2+ channels and the amplitude of L-type Ca2+ currents. Pflügers Archiv European Journal of Physiology 442:882–890

    Article  PubMed  CAS  Google Scholar 

  24. Fourtner RC (1978) The ultrastructure of the metathoracic femoral extensors of the cockroach, Periplaneta americana. Journal of Morphology 156:127–139

    Article  Google Scholar 

  25. Friedrich O, Ehmer T, Fink RHA (1999) Calcium currents during contraction and shortening in enzymatically isolated murine skeletal muscle fibres. J Physiol 517:757–770

    Article  PubMed  CAS  Google Scholar 

  26. Garcia J, Avila-Sakar AJ, Stefani E (1991) Differential effects of ryanodine and tetracaine on charge movement and calcium transients in frog skeletal muscle. J Physiol 440:403–17

    PubMed  CAS  Google Scholar 

  27. Gielow ML, Gu GG, Singh S (1995) Resolution and pharmacological analysis of the voltage-dependent calcium channels of Drosophila larval muscles. J Neurosci 15:6085–93

    PubMed  CAS  Google Scholar 

  28. Gyorke S, Palade P (1992) Calcium-induced calcium release in crayfish skeletal muscle. J Physiol 457:195–210

    PubMed  CAS  Google Scholar 

  29. Hasan G, Rosbash M (1992) Drosophila homologs of two mammalian intracellular Ca(2+)-release channels: identification and expression patterns of the inositol 1,4,5-triphosphate and the ryanodine receptor genes. Development 116:967–75

    PubMed  CAS  Google Scholar 

  30. Herold RC (1965) Development and ultrastructural changes of sarcosomes during honey bee flight muscle development. Dev Biol 12:269–86

    Article  PubMed  CAS  Google Scholar 

  31. Hildebrand ME, McRory JE, Snutch TP, Stea A (2004) Mammalian voltage-gated calcium channels are potently blocked by the pyrethroid insecticide allethrin. J Pharmacol Exp Ther 308:805–13

    Article  PubMed  CAS  Google Scholar 

  32. Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–49

    Article  Google Scholar 

  33. Jeziorski MC, Greenberg RM, Anderson PA (2000) The molecular biology of invertebrate voltage-gated Ca(2+) channels. J Exp Biol 203:841–56

    PubMed  CAS  Google Scholar 

  34. Jospin M, Jacquemond V, Mariol MC, Segalat L, Allard B (2002) The L-type voltage-dependent Ca2+ channel EGL-19 controls body wall muscle function in Caenorhabditis elegans. J Cell Biol 159:337–48

    Article  PubMed  CAS  Google Scholar 

  35. Kits KS, Mansvelder HD (1996) Voltage gated calcium channels in molluscs: classification, Ca2+ dependent inactivation, modulation and functional roles. Invert Neurosci 2:9–34

    Article  PubMed  CAS  Google Scholar 

  36. Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc Biol Sci 274:303–13

    Article  PubMed  Google Scholar 

  37. Littleton JT, Ganetzky B (2000) Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 26:35–43

    Article  PubMed  CAS  Google Scholar 

  38. Loesser KE, Castellani L, Franzini-Armstrong C (1992) Dispositions of junctional feet in muscles of invertebrates. J Muscle Res Cell Motil 13:161–73

    Article  PubMed  CAS  Google Scholar 

  39. Melzer W, Herrmann-Frank A, Luttgau HC (1995) The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim Biophys Acta 1241:59–116

    PubMed  Google Scholar 

  40. Palade P, Gyorke S (1993) Excitation–contraction coupling in crustacea: do studies on these primitive creatures offer insights about EC coupling more generally? J Muscle Res Cell Motil 14:283–287

    Article  PubMed  CAS  Google Scholar 

  41. Pichon Y, Ashcroft FM (1985) Nerve and muscle: electrical activity. In: Kerkut GA, Gilbert L (eds) Comprehensive Insect Physiology, Biochemistry and Pharmacology. Pergamon, Oxford, pp 85–113

    Google Scholar 

  42. Ren D, Xu H, Eberl DF, Chopra M, Hall LM (1998) A mutation affecting dihydropyridine-sensitive current levels and activation kinetics in Drosophila muscle and mammalian heart calcium channels. J Neurosci 18:2335–41

    PubMed  CAS  Google Scholar 

  43. Salkoff LB, Wyman RJ (1983) Ion currents in Drosophila flight muscles. J Physiol 337:687–709

    PubMed  CAS  Google Scholar 

  44. Sattelle D, Cordova D, Cheek T (2008) Insect ryanodine receptors: molecular targets for novel pest control chemicals. Invertebrate Neuroscience 8:107–119

    Article  PubMed  CAS  Google Scholar 

  45. Schafer S, Rosenboom H, Menzel R (1994) Ionic currents of Kenyon cells from the mushroom body of the honeybee. J Neurosci 14:4600–12

    PubMed  CAS  Google Scholar 

  46. Scott-Ward TS, Dunbar SJ, Windass JD, Williams AJ (2001) Characterization of the ryanodine receptor-Ca2+ release channel from the thoracic tissues of the lepidopteran insect Heliothis virescens. J Membr Biol 179:127–41

    Article  PubMed  CAS  Google Scholar 

  47. Singh S, Wu CF (1999) Ionic currents in larval muscles of Drosophila. Int Rev Neurobiol 43:191–220

    Article  PubMed  CAS  Google Scholar 

  48. Squecco R, Bencini C, Piperio C, Francini F (2004) L-type Ca2+ channel and ryanodine receptor cross-talk in frog skeletal muscle. J Physiol 555:137–152

    Article  PubMed  CAS  Google Scholar 

  49. Stroffekova K (2008) Ca2+/CaM-dependent inactivation of the skeletal muscle L-type Ca2+ channel (Cav1.1). Pflügers Archiv European Journal of Physiology 455:873–884

    Article  PubMed  CAS  Google Scholar 

  50. Sutko JL, Airey JA, Welch W, Ruest L (1997) The pharmacology of ryanodine and related compounds. Pharmacol Rev 49:53–98

    PubMed  CAS  Google Scholar 

  51. Szentesi P, Collet C, Sarkozi S, Szegedi C, Jona I, Jacquemond V, Kovacs L, Csernoch L (2001) Effects of dantrolene on steps of excitation–contraction coupling in mammalian skeletal muscle fibers. J Gen Physiol 118:355–75

    Article  PubMed  CAS  Google Scholar 

  52. Takekura H, Franzini-Armstrong C (2002) The structure of Ca2+ release units in arthropod body muscle indicates an indirect mechanism for excitation–contraction coupling. Biophys J 83:2742–53

    Article  PubMed  CAS  Google Scholar 

  53. Takeshima H, Nishi M, Iwabe N, Miyata T, Hosoya T, Masai I, Hotta Y (1994) Isolation and characterization of a gene for a ryanodine receptor/calcium release channel in Drosophila melanogaster. FEBS Lett 337:81–7

    Article  PubMed  CAS  Google Scholar 

  54. Timmerman MP, Ashley CC (1986) Fura-2 diffusion and its use as an indicator of transient free calcium changes in single striated muscle cells. FEBS Lett 209:1–8

    Article  PubMed  CAS  Google Scholar 

  55. Walz B, Baumann O, Zimmermann B, Ciriacy-Wantrup EV (1995) Caffeine- and ryanodine-sensitive Ca(2+)-induced Ca2+ release from the endoplasmic reticulum in honeybee photoreceptors. J Gen Physiol 105:537–67

    Article  PubMed  CAS  Google Scholar 

  56. Weidmann S (1952) The electrical constants of Purkinje fibres. J Physiol 118:348–60

    PubMed  CAS  Google Scholar 

  57. Weiss T, Erxleben C, Rathmayer W (2001) Voltage-clamp analysis of membrane currents and excitation-contraction coupling in a crustacean muscle. J Muscle Res Cell Motil 22:329–44

    Article  PubMed  CAS  Google Scholar 

  58. Zahradnik I, Zachar J (1987) Calcium channels in crayfish muscle fibre fragments studied by means of the Vaseline gap technique. Gen Physiol Biophys 6:113–25

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

CC wishes to thank the laboratory beekeepers: J. Aptel, and J.P. Vermandère for maintaining an experimental apiary in Avignon and providing bees, M. Charreton for excellent technical skills that she developed with CC during her recent professional retraining, I. Bornard for electron microscopy protocols and pictures, and V. Jacquemond for confocal imaging. The author thanks V. Jacquemond, B. Allard, G. Christé, C. Berthier, and three anonymous referees for valuable comments on an early version of this text. Finally, the author thanks INRA-SPE scientific department and Région Provence-Alpes-Côte d’Azur for their financial support allowing setting up a calcium imaging system in Avignon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Collet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collet, C. Excitation-contraction coupling in skeletal muscle fibers from adult domestic honeybee. Pflugers Arch - Eur J Physiol 458, 601–612 (2009). https://doi.org/10.1007/s00424-009-0642-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0642-6

Keywords

Navigation