Skip to main content

Advertisement

Log in

Potassium currents induced by hydrostatic pressure modulate membrane potential and transmitter release in vestibular type II hair cells

  • Sensory Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Vestibular type II hair cells respond to increases in the hydrostatic pressure with pressure-dependent K+ currents. We examined whether such currents may modulate transmitter release (assessed as membrane capacitance increments) by altering membrane potentials and voltage-gated Ca2+ currents. Capacitance increments were dependent on voltage-gated Ca2+ influx. Stimulating currents (0.7 nA) in current clamp induced depolarisations that were more negative by 8.7 ± 2.1 mV when the bath height was elevated from 0.2 to 0.5 cm. In voltage clamp, protocols were used that simulated the time course of the membrane potential in current clamp at either low (control) or high hydrostatic pressure (high bath). The low bath protocol induced significantly larger Ca2+ currents and increases in capacitance than the high bath protocol. We conclude that pressure-dependent K+ currents may alter the voltage response of vestibular hair cells to an extent critical for Ca2+ currents and transmitter release. This mechanism may contribute to vestibular dysfunction in Meniere’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andrews JC (1997) Laboratory experience with experimental endolymphatic hydrops. Otolaryngol Clin North Am 30:969–976

    PubMed  CAS  Google Scholar 

  2. Andrews JC, Böhmer A, Hoffman LF (1991) The measurement and manipulation of intralabyrinthine pressure in experimental endolymphatic hydrops. Laryngoscope 101:661–668

    Article  PubMed  CAS  Google Scholar 

  3. Arab SF, Düwel P, Jüngling E, Westhofen M, Lückhoff A (2004) Inhibition of voltage-gated calcium currents in type II vestibular hair cells by cinnarizine. Naunyn Schmiedebergs Arch Pharmacol 369:570–575

    Article  PubMed  CAS  Google Scholar 

  4. Beurg M, Safieddine S, Roux I, Bouleau Y, Petit C, Dulon D (2008) Calcium- and otoferlin-dependent exocytosis by immature outer hair cells. J Neurosci 28:1798–1803

    Article  PubMed  CAS  Google Scholar 

  5. Beutner D, Voets T, Neher E, Moser T (2001) Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29:681–690

    Article  PubMed  CAS  Google Scholar 

  6. Böhmer A, Andrews JC (1989) Maintenance of hydrostatic pressure gradients in the membranous labyrinth. Arch Otorhinolaryngol 246:65–66

    Article  PubMed  Google Scholar 

  7. Böhmer A, Dillier N (1990) Experimental endolymphatic hydrops: are cochlear and vestibular symptoms caused by increased endolymphatic pressure? Ann Otol Rhinol Laryngol 99:470–476

    PubMed  Google Scholar 

  8. Bonsacquet J, Brugeaud A, Compan V, Desmadryl G, Chabbert C (2006) AMPA type glutamate receptor mediates neurotransmission at turtle vestibular calyx synapse. J Physiol 576:63–71

    Article  PubMed  CAS  Google Scholar 

  9. Brandt N, Kuhn S, Münkner S, Braig C, Winter H, Blin N, Vonthein R, Knipper M, Engel J (2007) Thyroid hormone deficiency affects postnatal spiking activity and expression of Ca2+ and K+ channels in rodent inner hair cells. J Neurosci 27:3174–3186

    Article  PubMed  CAS  Google Scholar 

  10. Duong Dinh TA, Jüngling E, Strotmann KH, Westhofen M, Lückhoff A (2006) Ultrasonic bath depth control and regulation in single cell recordings. Pflugers Arch 452:784–788

    Article  PubMed  CAS  Google Scholar 

  11. Düwel P, Haasler T, Jüngling E, Duong TA, Westhofen M, Lückhoff A (2005) Effects of cinnarizine on calcium and pressure-dependent potassium currents in guinea pig vestibular hair cells. Naunyn Schmiedebergs Arch Pharmacol 371:441–448

    Article  PubMed  CAS  Google Scholar 

  12. Düwel P, Jüngling E, Westhofen M, Lückhoff A (2003) Potassium currents in vestibular type II hair cells activated by hydrostatic pressure. Neuroscience 116:963–972

    Article  PubMed  Google Scholar 

  13. Eatock RA, Hurley KM, Vollrath MA (2002) Mechanoelectrical and voltage-gated ion channels in mammalian vestibular hair cells. Audiol Neurootol 7:31–35

    Article  PubMed  CAS  Google Scholar 

  14. Edmonds BW, Gregory FD, Schweizer FE (2004) Evidence that fast exocytosis can be predominantly mediated by vesicles not docked at active zones in frog saccular hair cells. J Physiol 560:439–450

    Article  PubMed  CAS  Google Scholar 

  15. Gentet LJ, Stuart GJ, Clements JD (2000) Direct measurement of specific membrane capacitance in neurons. Biophys J 79:314–320

    Article  PubMed  CAS  Google Scholar 

  16. Johnson SL, Forge A, Knipper M, Münkner S, Marcotti W (2008) Tonotopic variation in the calcium dependence of neurotransmitter release and vesicle pool replenishment at mammalian auditory ribbon synapses. J Neurosci 28:7670–7678

    Article  PubMed  CAS  Google Scholar 

  17. Johnson SL, Marcotti W, Kros CJ (2005) Increase in efficiency and reduction in Ca2+ dependence of exocytosis during development of mouse inner hair cells. J Physiol 563.1:177–191

    Google Scholar 

  18. Kollmar R, Montgomery LG, Fak J, Henry LJ, Hudspeth AJ (1997) Predominance of the α1D subunit in L-type voltage-gated Ca2+ channels of hair cells in the chicken's cochlea. Proc Natl Acad Sci USA 94:14883–14888

    Article  PubMed  CAS  Google Scholar 

  19. Lindau M, Neher E (1988) Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflugers Arch 411:137–146

    Article  PubMed  CAS  Google Scholar 

  20. Maire R, Van Melle G (2000) Dynamic asymmetry of the vestibulo-ocular reflex in unilateral peripheral vestibular and cochleovestibular loss. Laryngoscope 110:256–263

    Article  PubMed  CAS  Google Scholar 

  21. Matthews G (1996) Synaptic exocytosis and endocytosis: capacitance measurements. Curr Opin Neurobiol 6:358–364

    Article  PubMed  CAS  Google Scholar 

  22. Moser T, Beutner D (2000) Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc Natl Acad Sci USA 97:883–888

    Article  PubMed  CAS  Google Scholar 

  23. Moser T, Neher E (1997) Estimation of mean exocytic vesicle capacitance in mouse adrenal chromaffin cells. Proc Natl Acad Sci USA 94:6735–6740

    Article  PubMed  CAS  Google Scholar 

  24. Penner R, Neher E (1988) Secretory responses of rat peritoneal mast cells to high intracellular calcium. FEBS Lett 226:307–313

    Article  PubMed  CAS  Google Scholar 

  25. Portzehl H, Caldwell PC, Rueegg JC (1964) The dependence of contraction and relaxation of muscle fibres from the crab maia squinado on the internal concentration of free calcium ions. Biochim Biophys Acta 79:581–591

    PubMed  CAS  Google Scholar 

  26. Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul A, Perfettini I, LeGall M, Rostaing P, Hamard G, Triller A, Avan P, Moser T, Petit C (2006) Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127:277–289

    Article  PubMed  CAS  Google Scholar 

  27. von Gersdorff H, Matthews G (1994) Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367:735–739

    Article  Google Scholar 

  28. Wersäll J, Bagger-Sjöbäck D (1974) Morphology of the vestibular sense organ. In: Kornhuber HH (ed) Handbook of sensory physiology. Springer, Berlin, pp 123–170

    Google Scholar 

  29. Xu W, Lipscombe D (2001) Neuronal CaV1.3α1D L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci 21:5944–5951

    PubMed  CAS  Google Scholar 

  30. Zhou W, Jones S (1995) Surface charge and calcium channel saturation in bullfrog sympathetic neurons. J Gen Physiol 105(4):441–462

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant of Hennig Pharmazeuticals, Flörsheim am Main, Germany, to T.D. and a START grant by the Medical Faculty Aachen to T.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lückhoff.

Additional information

Duong Dinh and Haasler contributed equally to this work.

Electronic supplementary material

Below is the image is a link to a high resolution version

Supplementary Fig. 1

K+ currents in a vestibular type II hair cell induced by hydrostatic pressure. K+ outward currents were elicited by a depolarising pulse to 0 mV for 20 ms. The height of the bath was 0.5 cm during trace 1, then lowered to 0.2 cm for trace 2 and put back to 0.5 cm for trace 3 (GIF 24.0 kb)

High resolution image file (EPS 316 kb)

Supplementary Fig. 2

Ca2+ currents (measured with 20 mM Ba2+ as charge carrier) during low and high hydrostatic pressure. The upper panel shows two superposed current traces during depolarisations tow −10 mV. The lower panel shows current values at various command voltages (GIF 28.8 kb)

High resolution image file (EPS 120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duong Dinh, T.A., Haasler, T., Homann, G. et al. Potassium currents induced by hydrostatic pressure modulate membrane potential and transmitter release in vestibular type II hair cells. Pflugers Arch - Eur J Physiol 458, 379–387 (2009). https://doi.org/10.1007/s00424-008-0622-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0622-2

Keywords

Navigation