Skip to main content

Advertisement

Log in

Thick ascending limb: the Na+:K+:2Cl co-transporter, NKCC2, and the calcium-sensing receptor, CaSR

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The thick ascending limb of Henle’s loop is a nephron segment that is vital to the formation of dilute and concentrated urine. This ability is accomplished by a consortium of functionally coupled proteins consisting of the apical Na+:K+:2Cl co-transporter, the K+ channel, and basolateral Cl channel that mediate electroneutral salt absorption. In thick ascending limbs, salt absorption is importantly regulated by the calcium-sensing receptor. Genetic or pharmacological disruption impairing the function of any of these proteins results in Bartter syndrome. The thick ascending limb is also an important site of Ca2+ and Mg2+ absorption. Calcium-sensing receptor activation inhibits cellular Ca2+ absorption induced by parathyroid hormone, as well as passive paracellular Ca2+ transport. The present review discusses these functions and their genetic and molecular regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Binding to the same recognition site as an endogenous agonist.

  2. TAL apical membranes express 30- and 70-pS channels, and high-conductance, Ca2+-activated maxi K+ channels. ROMK, the 30-pS channel is absent from apical membranes of ROMK-null mice. The 70-pS channel mediates 80% of the apical K+ conductance. Current thinking suggests that the 70-pS K+ channel is a heterotetramer that includes ROMK, which may be a pore-containing subunit of the 70-pS K+ channels. ROMK1 is expressed in cortical collecting ducts, whereas ROMK2 is present in TAL [13].

  3. Such a problem may contribute to or account for the findings of Desfleurs, who found that increasing basolateral calcium inhibited net calcium absorption without altering Na, Cl, K, or Mg transport by single perfused mouse CALs, [36]. CaSR activation was achieved by increasing basolateral calcium. The CAL, however, is highly permeable to calcium and elevating calcium asymmetrically at the serosal surface increases calcium backflux and results in diminished net calcium absorption regardless of an effect on the CaSR [14]. Under these conditions, it is not possible to distinguish a non-specific effect of diminished driving force from a specific action that can be attributed to the CaSR.

References

  1. Abdullah HI, Pedraza PL, McGiff JC, Ferreri NR (2008) CaR activation increases TNF production by mTAL cells via a Gi-dependent mechanism. Am J Physiol Renal Physiol 294:F345–F354

    PubMed  CAS  Google Scholar 

  2. Adachi M, Asakura Y, Sato Y, Tajima T, Nakajima T, Yamamoto T, Fujieda K (2007) Novel SLC12A1 (NKCC2) mutations in two families with Bartter syndrome type 1. Endocr J 54:1003–1007

    PubMed  CAS  Google Scholar 

  3. Amlal H, Legoff C, Vernimmen C, Paillard M, Bichara M (1996) Na+–K+ (NH4 +)–2Cl cotransport in medullary thick ascending limb: control by PKA, PKC, and 20-HETE. Am J Physiol 271:C455–C463

    PubMed  CAS  Google Scholar 

  4. Arthur JM, Collinsworth GP, Gettys TW, Quarles LD, Raymond JR (1997) Specific coupling of a cation-sensing receptor to G protein a-subunits in MDCK cells. Am J Physiol 273:F129–F135

    PubMed  CAS  Google Scholar 

  5. Asano T, Takata K, Katagiri H, Ishihara H, Inukai K, Anai M, Hirano H, Yazaki Y, Oka Y (1993) The role of N-glycosylation in the targeting and stability of GLUT1 glucose transporter. FEBS Lett 324:258–261

    PubMed  CAS  Google Scholar 

  6. Attmane-Elakeb A, Mount DB, Sibella V, Vernimmen C, Hebert SC, Bichara M (1998) Stimulation by in vivo and in vitro metabolic acidosis of expression of rBSC-1, the Na+–K+(NH4 +)–2Cl cotransporter of the rat medullary thick ascending limb. J Biol Chem 273:33681–33691

    PubMed  CAS  Google Scholar 

  7. Attmane-Elakeb A, Sibella V, Vernimmen C, Belenfant X, Hebert SC, Bichara M (2000) Regulation by glucocorticoids of expression and activity of rBSC1, the Na+–K+(NH4 +)–2Cl cotransporter of medullary thick ascending limb. J Biol Chem 275:33548–33553

    PubMed  CAS  Google Scholar 

  8. Bai M, Trivedi S, Brown EM (1998) Dimerization of the extracellular CaSR (CaR) on the cell surface of CaR-transfected HEK293 cells. J Biol Chem 273:23605–23610

    PubMed  CAS  Google Scholar 

  9. Bartter FC, Pronove P, Gill JR Jr., MacCardle RC (1998) Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. 1962. J Am Soc Nephrol 9:516–528

    PubMed  CAS  Google Scholar 

  10. Benziane B, Demaratez S, Defontaine N, Zaarour N, Cheval L, Bourgeois S, Klein C, Froissart M, Blanchard A, Pailard M, Gamba G, Houillier P, Laghmani K (2007) NKCC2 surface expression in mammalian cells: down-regulation by novel interaction with aldolase B. J Biol Chem 282:33817–33830

    PubMed  CAS  Google Scholar 

  11. Besseghir K, Trimble ME, Stoner L (1986) Action of ADH on isolated medullary thick ascending limb of the Brattleboro rat. Am J Physiol 251:F271–F277

    PubMed  CAS  Google Scholar 

  12. Bettinelli A, Ciarmatori S, Cesareo L, Tedeschi S, Ruffa G, Appiani AC, Rosini A, Grumieri G, Mercuri B, Sacco M, Leozappa G, Binda S, Cecconi M, Navone C, Curcio C, Syren ML, Casari G (2000) Phenotypic variability in Bartter syndrome type I. PediatrNephrol 14:940–945

    CAS  Google Scholar 

  13. Boim MA, Ho K, Shuck ME, Bienkowski MJ, Block JH, Slightom JL, Yang Y, Brenner BM, Hebert SC (1995) ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. Am J Physiol 268:F1132–1140

    PubMed  CAS  Google Scholar 

  14. Bourdeau JE, Burg MB (1979) Voltage dependence of calcium transport in the thick ascending limb of Henle’s loop. Am J Physiol 236:F357–F364

    PubMed  CAS  Google Scholar 

  15. Brown EM (1991) Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol Rev 71:371–411

    PubMed  CAS  Google Scholar 

  16. Brown EM (2007) The CaSR: physiology, pathophysiology and CaR-based therapeutics. Subcell Biochem 45:139–167

    PubMed  CAS  Google Scholar 

  17. Brown EM, Fuleihan Ge-H, Chen CJ, Kifor O (1990) A comparison of the effects of divalent and trivalent cations on parathyroid hormone release, 3′,5′-cyclic-adenosine monophosphate accumulation, and the levels of inositol phosphates in bovine parathyroid cells. Endocrinology 127:1064–1071

    PubMed  CAS  Google Scholar 

  18. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Hebert SC (1993) Cloning, expression, and characterization of the bovine parathyroid Ca2+ sensing receptor (BOPCAR). J Am Soc Nephrol 4:704

    Google Scholar 

  19. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC (1993) Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366:575–580

    PubMed  CAS  Google Scholar 

  20. Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297

    PubMed  CAS  Google Scholar 

  21. Burg MB (1982) Thick ascending limb of Henle’s loop. Kidney Int 22:454–464

    PubMed  CAS  Google Scholar 

  22. Burg MB, Green N (1973) Function of the thick ascending limb of Henle’s loop. Am J Physiol 224:659–668

    PubMed  CAS  Google Scholar 

  23. Butters RR Jr., Chattopadhyay N, Nielsen P, Smith CP, Mithal A, Kifor O, Bai M, Quinn S, Goldsmith P, Hurwitz S, Krapcho K, Busby J, Brown EM (1997) Cloning and characterization of a CaSR from the hypercalcemic New Zealand white rabbit reveals unaltered responsiveness to extracellular calcium. J Bone Miner Res 12:568–579

    PubMed  CAS  Google Scholar 

  24. Castrop H, Lorenz JN, Hansen P, Friis U, Mizel D, Oppermann M, Jensen B, Briggs J, Skott O, Schnermann J (2005) Contribution of the basolateral isoform of the Na,K,2Cl-cotransporter (NKCC1/BSC2) to renin secretion. Am J Physiol Renal Physiol 289:F1185–F1192

    PubMed  CAS  Google Scholar 

  25. Chang W, Shoback D (2004) Extracellular Ca2+-sensing receptors—an overview. Cell Calcium 35:183–196

    PubMed  CAS  Google Scholar 

  26. Chen CJ, Barnett JV, Congo DA, Brown EM (1989) Divalent cations suppress 3′,5′-adenosine monophosphate accumulation by stimulating a pertussis toxin-sensitive guanine nucleotide-binding protein in cultured bovine parathyroid cells. Endocrinology 124:233–239

    PubMed  CAS  Google Scholar 

  27. Cheng SX, Geibel JP, Hebert SC (2004) Extracellular polyamines regulate fluid secretion in rat colonic crypts via the extracellular calcium-sensing receptor. Gastroenterology 126:148–158

    PubMed  CAS  Google Scholar 

  28. Conigrave AD, Quinn SJ, Brown EM (2000) L-amino acid sensing by the extracellular Ca2+-sensing receptor. Proc Natl Acad Sci U S A 97:4814–4819

    PubMed  CAS  Google Scholar 

  29. Conklin BR, Bourne HR (1994) Homeostatic signals. Marriage of the flytrap and the serpent. Nature 367:22

    PubMed  CAS  Google Scholar 

  30. Contreras AM, Ramirez M, Cueva L, Alvarez S, de Loza R, Gamba G (1994) Low serum albumin and the increased risk of amikacin nephrotoxicity. Rev Invest Clin 46:37–43

    PubMed  CAS  Google Scholar 

  31. Culpepper RM, Andreoli TE (1984) PGE2, forskolin, and cholera toxin interactions in modulating NaCl transport in mouse mTALH. Am J Physiol Renal Physiol 247:F784–792

    CAS  Google Scholar 

  32. Cutler CP, Cramb G (2008) Differential expression of absorptive cation-chloride-cotransporters in the intestinal and renal tissues of the European eel (Anguilla anguilla). Comp Biochem Physiol B Biochem Mol Biol 149:63–73

    PubMed  Google Scholar 

  33. de Jesus Ferreira MC, Bailly C (1998) Extracellular Ca2+ decreases chloride reabsorption in rat CTAL by inhibiting cAMP pathway. Am J Physiol Renal Physiol 275:F198–F203

    Google Scholar 

  34. de Jesus Ferreira MC, Helies-Toussaint C, Imbert-Teboul M, Bailly C, Verbavatz JM, Bellanger AC, Chabardes D (1998) Co-expression of a Ca2+-inhibitable adenylyl cyclase and of a Ca2+-sensing receptor in the cortical thick ascending limb cell of the rat kidney. Inhibition of hormone-dependent cAMP accumulation by extracellular Ca2+. J Biol Chem 273:15192–15202

    PubMed  Google Scholar 

  35. Delpire E, Rauchman MI, Beier DR, Hebert SC, Gullans SR (1994) Molecular cloning and chromosome localization of a putative basolateral Na+–K+–2Cl cotransporter from mouse inner medullary collecting duct (mIMCD-3) cells. J Biol Chem 269:25677–25683

    PubMed  CAS  Google Scholar 

  36. Desfleurs E, Wittner M, Simeone S, Pajaud S, Moine G, Rajerison R, Di Stefano A (1998) CaSR: regulation of electrolyte transport in the thick ascending limb of Henle’s loop. Kidney Blood Press Res 21:401–412

    PubMed  CAS  Google Scholar 

  37. Dimke H, Flyvbjerg A, Bourgeois S, Thomsen K, Frokiaer J, Houillier P, Nielsen S, Frische S (2007) Acute growth hormone administration induces antidiuretic and antinatriuretic effects and increases phosphorylation of NKCC2. Am J Physiol Renal Physiol 292:F723–F735

    PubMed  CAS  Google Scholar 

  38. Ecelbarger CA, Terris J, Hoyer JR, Nielsen A, Wade JB, Knepper MA (1996) Localization and regulation of the rat renal Na+–K+–2Cl cotransporter, BSC1. Am J Physiol Renal Physiol 271:F619–F628

    CAS  Google Scholar 

  39. Edwards BR, Sutton RAL, Dirks JH (1974) Effect of calcium infusion on renal tubular reabsorption in the dog. Am J Physiol 227:13–18

    PubMed  CAS  Google Scholar 

  40. Escalante B, Erlij D, Falck JR, McGiff JC (1991) Effect of cytochrome P450 arachidonate metabolites on ion transport in rabbit kidney loop of Henle. Science 251:799–802

    PubMed  CAS  Google Scholar 

  41. Eveloff J, Calamia J (1986) Effect of osmolarity on cation fluxes in medullary thick ascending limb cells. Am J Physiol Renal Physiol 250:F176–F180

    CAS  Google Scholar 

  42. Eveloff J, Warnock DK (1987) Activation of ion transport system during cell volume regulation. Am J Physiol Renal Physiol 252:F1–F10

    CAS  Google Scholar 

  43. Fernandez-Llama P, Ecelbarger CA, Ware JA, Andrews P, Lee AJ, Turner R, Nielsen S, Knepper MA (1999) Cyclooxygenase inhibitors increase Na–K–2Cl cotransporter abundance in thick ascending limb of Henle’s loop. Am J Physiol 277:F219–F226

    PubMed  CAS  Google Scholar 

  44. Ferreri NR, McGiff JC, Vio CP, Carroll MA (2003) TNFα regulates renal COX-2 in the rat thick ascending limb (TAL). Thromb Res 110:277–280

    PubMed  CAS  Google Scholar 

  45. Fitzpatrick LA, Brandi ML, Aurbach GD (1986) Calcium-controlled secretion is effected through a guanine nucleotide regulatory protein in parathyroid cells. Endocrinology 119:2700–2703

    Article  PubMed  CAS  Google Scholar 

  46. Formenti A, De Simoni A, Arrigoni E, Martina M (2001) Changes in extracellular Ca2+ can affect the pattern of discharge in rat thalamic neurons. J Physiol 535:33–45

    PubMed  CAS  Google Scholar 

  47. Fraser SA, Gimenez I, Cook N, Jennings I, Katerelos M, Katsis F, Levidiotis V, Kemp BE, Power DA (2007) Regulation of the renal-specific Na+–K+–2Cl co-transporter NKCC2 by AMP-activated protein kinase (AMPK). Biochem J 405:85–93

    PubMed  CAS  Google Scholar 

  48. Friedman PA (1998) Codependence of renal calcium and sodium transport. Annu Rev Physiol 60:179–197

    PubMed  CAS  Google Scholar 

  49. Friedman PA, Gesek FA (1993) Calcium transport in renal epithelial cells. Am J Physiol 264:F181–F198

    PubMed  CAS  Google Scholar 

  50. Friedman PA, Gesek FA, Coutermarsh BA, Kennedy SM (1994) PKA and PKC activation is required for PTH-stimulated calcium uptake by distal convoluted tubule cells. J Am Soc Nephrol 5:715

    Google Scholar 

  51. Fukuyama S, Okudaira S, Yamazato S, Yamazato M, Ohta T (2003) Analysis of renal tubular electrolyte transporter genes in seven patients with hypokalemic metabolic alkalosis. Kidney Int 64:808–816

    PubMed  CAS  Google Scholar 

  52. Gagnon E, Bergeron MJ, Brunet GM, Daigle ND, Simard CF, Isenring P (2003) Molecular mechanisms of Cl transport by the renal Na–K–Cl cotransporter: identification of an intracellular locus that may form part of a high affinity Cl-binding site. J Biol Chem 279:5648–5654

    PubMed  Google Scholar 

  53. Gagnon E, Forbush B, Flemmer AW, Gimenez I, Caron L, Isenring P (2002) Functional and molecular characterization of the shark renal Na–K–Cl cotransporter: novel aspects. Am J Physiol Renal Physiol 283:F1046–F1055

    PubMed  Google Scholar 

  54. Gamba G (2005) Molecular physiology and pathophysiology of the electroneutral cation-chloride cotransporters. Physiol Rev 85:423–493

    PubMed  CAS  Google Scholar 

  55. Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, Hebert SC (1994) Molecular cloning, primary structure and characterization of two members of the mammalian electroneutral sodium–(potassium)–chloride cotransporter family expressed in kidney. J Biol Chem 269:17713–17722

    PubMed  CAS  Google Scholar 

  56. Geering K, Theulaz F, Verrey M, Hauptle T, Rossier BC (1989) A role for the β-subunit in the expression of functional Na+–K+-ATPase in Xenopus oocytes. Am J Physiol Cell Physiol 257:C851–C858

    CAS  Google Scholar 

  57. Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocrine Rev 21:90–113

    CAS  Google Scholar 

  58. Gimenez I, Forbush B (2003) Short-term stimulation of the renal Na–K–Cl cotransporter (NKCC2) by vasopressin involves phosphorylation and membrane translocation of the protein. J Biol Chem 278:26946–26951

    PubMed  CAS  Google Scholar 

  59. Gimenez I, Forbush B (2005) Regulatory phosphorylation sites in the N-terminus of the renal Na–K–Cl cotransporter (NKCC2). Am J Physiol Renal Physiol 289:F1341–F1345

    PubMed  CAS  Google Scholar 

  60. Gimenez I, Forbush B (2007) The residues determining differences in ion affinities among the alternative splice variants F, A, and B of the mammalian Renal Na–K–Cl cotransporter (NKCC2). J Biol Chem 282:6540–6547

    PubMed  CAS  Google Scholar 

  61. Gimenez I, Isenring P, Forbush B III (2002) Spatially distributed alternative splice variants of the renal Na–K–Cl cotransporter exhibit dramatically different affinities for the transported ions. J Biol Chem 277:8767–8770

    PubMed  CAS  Google Scholar 

  62. Gonzalez-Perret S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci U S A 98:1182–1187

    Google Scholar 

  63. Good DW (1994) Ammonium transport by the thick ascending limb of Henle’s loop. Annu Rev Physiol 56:623–647

    PubMed  CAS  Google Scholar 

  64. Greger R (1981) Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle. A sodium dependent process. Pflugers Arch 390:38–43

    PubMed  CAS  Google Scholar 

  65. Greger R, Schlatter E (1981) Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pflugers Arch 392:92–94

    PubMed  CAS  Google Scholar 

  66. Greger R, Schlatter E (1983) Properties of the basolateral membrane of the cortical thick ascending limb of Henle’s loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Arch 396:325–334

    PubMed  CAS  Google Scholar 

  67. Greger R, Schlatter E (1983) Properties of the lumen membrane of the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pflugers Arch 396:315–324

    PubMed  CAS  Google Scholar 

  68. Greger R, Schlatter E, Lang F (1983) Evidence for electroneutral sodium chloride cotransport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pflugers Arch 396:308–314

    PubMed  CAS  Google Scholar 

  69. Haas M, Dunham PB, Forbush IB (1991) [3H]Bumetanide binding to mouse kidney membranes: identification of corresponding membrane proteins. Am J Physiol Cell Physiol 260:C791–C804

    CAS  Google Scholar 

  70. Hall DA, Varney DM (1980) Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle’s loop. J Clin Invest 66:792–802

    PubMed  CAS  Google Scholar 

  71. Hamill OP, McBride DW Jr. (1996) The pharmacology of mechanogated membrane ion channels. Pharmacol Rev 48:231–252

    PubMed  CAS  Google Scholar 

  72. Hammerland LG, Krapcho KJ, Garrett JE, Alasti N, Hung BCP, Simin RT, Levinthal C, Nemeth EF, Fuller FH (1999) Domains determining ligand specificity for Ca2+ receptors. Mol Pharmacol 55:642–648

    PubMed  CAS  Google Scholar 

  73. Handlogten ME, Shiraishi N, Awata H, Huang C, Miller RT (2000) Extracellular Ca2+-sensing receptor is a promiscuous divalent cation sensor that responds to lead. Am J Physiol Renal Physiol 279:F1083–F1091

    PubMed  CAS  Google Scholar 

  74. Harrington PE, Fotsch C (2007) Calcium sensing receptor activators: calcimimetics. Curr Med Chem 14:3027–3034

    PubMed  CAS  Google Scholar 

  75. Hebert SC, Culpepper RM, Andreoli TE (1981) NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport. Am J Physiol 241:F412–F431

    PubMed  CAS  Google Scholar 

  76. Hebert SC, Culpepper RM, Andreoli TE (1981) NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport. Am J Physiol Renal Physiol 241:F412–F431

    CAS  Google Scholar 

  77. Hebert SC, Culpepper RM, Andreoli TE (1981) NaCl transport in mouse medullary thick ascending limbs. II. ADH enhancement of transcellular NaCl cotransport; origin of transepithelial voltage. Am J Physiol Renal Physiol 241:F432–F442

    CAS  Google Scholar 

  78. Hebert SC, Culpepper RM, Andreoli TE (1981) NaCl transport in mouse medullary thick ascending limbs. III. Modulation of ADH effect by peritubular osmolality. Am J Physiol Renal Physiol 241:F443–F451

    CAS  Google Scholar 

  79. Hofer AM, Brown EM (2003) Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol 4:530–538

    PubMed  CAS  Google Scholar 

  80. Hu J, Spiegel AM (2007) Structure and function of the human calcium-sensing receptor: insights from natural and engineered mutations and allosteric modulators. J Cell Mol Med 11:908–922

    PubMed  CAS  Google Scholar 

  81. Huang C, Handlogten ME, Miller RT (2002) Parallel activation of phosphatidylinositol 4-kinase and phospholipase C by the extracellular CaSR. J Biol Chem 277:20293–20300

    PubMed  CAS  Google Scholar 

  82. Huang C, Hujer KM, Wu Z, Miller RT (2004) The Ca2+-sensing receptor couples to Gα12/13 to activate phospholipase D in Madin–Darby canine kidney cells. Am J Physiol Cell Physiol 286:C22–C30

    PubMed  CAS  Google Scholar 

  83. Huang C, Miller RT (2007) Regulation of renal ion transport by the CaSR: an update. Curr Opin Nephrol Hypertens 16:437–443

    PubMed  Google Scholar 

  84. Igarashi P, Vanden Heuver GB, Payne JA, Forbush IB (1995) Cloning, embryonic expression, and alternative splicing of a murine kidney-specific Na–K–Cl cotransporter. Am J Physiol Renal Physiol 269:F406–F418

    Google Scholar 

  85. Ji W, Foo JN, O’Roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State MW, Levy D, Lifton RP (2008) Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 40:592–599

    PubMed  CAS  Google Scholar 

  86. Kaplan MR, Plotkin MD, Lee WS, Xu ZC, Lytton J, Hebert SC (1996) Apical localization of the Na–K–Cl cotransporter, rBSC1, on rat thick ascending limbs. Kidney Int 49:40–47

    PubMed  CAS  Google Scholar 

  87. Karim Z, Attmane-Elakeb A, Sibella V, Bichara M (2003) Acid pH increases the stability of BSC1/NKCC2 mRNA in the medullary thick ascending limb. J Am Soc Nephrol 14:2229–2236

    PubMed  CAS  Google Scholar 

  88. Kawakami K, Noguchi S, Noda M, Takahashi H, Ohta T, Kawamura M, Nojima H, Nagano K, Hirose T, Inayama S, Hayashida H, Miyata T, Numa S (1985) Primary structure of the α-subunit of Torpedo californica (Na+ + K+)ATPase deduced from cDNA sequence. Nature 316:733–736

    PubMed  CAS  Google Scholar 

  89. Kifor O, Diaz R, Butters R, Brown EM (1997) The Ca2+-sensing receptor (CaR) activates phospholipases C, A2, and D in bovine parathyroid and CaR-transfected, human embryonic kidney (HEK293) cells. J Bone Miner Res 12:715–725

    PubMed  CAS  Google Scholar 

  90. Kim GH, Ecelbarger CA, Mitchell C, Packer RK, Wade JB, Knepper MA (1999) Vasopressin increases Na–K–2Cl cotransporter expression in thick ascending limb of Henle’s loop. Am J Physiol Renal Physiol 276:F96–F103

    CAS  Google Scholar 

  91. Knepper MA, Packer R, Good DW (1989) Ammonium transport in the kidney. Physiol Rev 69:179–249

    PubMed  CAS  Google Scholar 

  92. Kurtz CL, Karolyi L, Seyberth HW, Koch MC, Vargas R, Feldmann D, Vollmer M, Knoers NV, Madrigal G, Guay-Woodford LM (1997) A common NKCC2 mutation in Costa Rican Bartter’s syndrome patients: evidence for a founder effect. J Am Soc Nephrol 8:1706–1711

    PubMed  CAS  Google Scholar 

  93. Lalioti MD, Zhang J, Volkman HM, Kahle KT, Hoffmann KE, Toka HR, Nelson-Williams C, Ellison DH, Flavell R, Booth CJ, Lu Y, Geller DS, Lifton RP (2006) Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule. Nat Genet 38:1124–1132

    PubMed  CAS  Google Scholar 

  94. Mamillapalli R, VanHouten J, Zawalich W, Wysolmerski J (2008) Switching of G-protein usage by the calcium-sensing receptor reverses its effect on parathyroid hormone-related protein secretion in normal versus malignant breast cells. J Biol Chem 283:24435–24447

    PubMed  CAS  Google Scholar 

  95. Massry SG, Coburn JW, Chapman LW, Kleeman CR (1968) Role of serum Ca, parathyroid hormone, and NaCl infusion on renal Ca and Na clearances. Am J Physiol 214:1403–1409

    PubMed  CAS  Google Scholar 

  96. McDonough AA, Geering K, Farley RA (1990) The sodium pump needs its β subunit. FASEB J 4:1598–1605

    PubMed  CAS  Google Scholar 

  97. Meade P, Hoover RS, Plata C, Vazquez N, Bobadilla NA, Gamba G, Hebert SC (2003) cAMP-dependent activation of the renal-specific Na+–K+–2Cl cotransporter is mediated by regulation of cotransporter trafficking. Am J Physiol Renal Physiol 284:F1145–F1154

    PubMed  CAS  Google Scholar 

  98. Moriguchi T, Urushiyama S, Hisamoto N, Iemura S, Uchida S, Natsume T, Matsumoto K, Shibuya H (2005) WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. J Biol Chem 280:42685–42693

    PubMed  CAS  Google Scholar 

  99. Motoyama HI, Friedman PA (2002) CaSR regulation of PTH-dependent calcium absorption by mouse cortical ascending limbs. Am J Physiol Renal Physiol 283:F399–F406

    PubMed  CAS  Google Scholar 

  100. Mount DB, Baekgard A, Hall AE, Plata C, Xu J, Beier DR, Gamba G, Hebert SC (1999) Isoforms of the Na–K–2Cl transporter in murine TAL I. Molecular characterization and intrarenal localization. Am J Physiol Renal Physiol 276:F347–F358

    CAS  Google Scholar 

  101. Mun HC, Franks AH, Culverston EL, Krapcho K, Nemeth EF, Conigrave AD (2004) The venus fly trap domain of the extracellular Ca2+-sensing receptor is required for l-amino acid sensing. J Biol Chem 279:51739–51744

    PubMed  CAS  Google Scholar 

  102. Mupanomunda MM, Tian B, Ishioka N, Bukoski RD (2000) Renal interstitial Ca2+. Am J Physiol Renal Physiol 278:F644–F669

    PubMed  CAS  Google Scholar 

  103. Nemeth EF, Fox J (1999) Calcimimetic compounds: a direct approach to controlling plasma levels of parathyroid hormone in hyperparathyroidism. Trends Endocrinol Metab 10:66–71

    PubMed  CAS  Google Scholar 

  104. Nemeth EF, Heaton WH, Miller M, Fox J, Balandrin MF, Van Wagenen BC, Colloton M, Karbon W, Scherrer J, Shatzen E, Rishton G, Scully S, Qi M, Harris R, Lacey D, Martin D (2004) Pharmacodynamics of the type II calcimimetic compound cinacalcet HCl. J Pharmacol Toxicol Methods 308:627–635

    CAS  Google Scholar 

  105. Ohki G, Miyoshi T, Murata M, Ishibashi K, Imai M, Suzuki M (2000) A calcium-activated cation current by an alternatively spliced form of Trp3 in the heart. J Biol Chem 275:39055–39060

    PubMed  CAS  Google Scholar 

  106. Oppermann M, Mizel D, Kim SM, Chen L, Faulhaber-Walter R, Huang Y, Li C, Deng C, Briggs J, Schnermann J, Castrop H (2007) Renal function in mice with targeted disruption of the A isoform of the Na–K–2Cl co-transporter. J Am Soc Nephrol 18:440–448

    PubMed  CAS  Google Scholar 

  107. Ortiz PA (2006) cAMP increases surface expression of NKCC2 in rat thick ascending limbs: role of VAMP. Am J Physiol Renal Physiol 290:F608–F616

    PubMed  CAS  Google Scholar 

  108. Pace AJ, Gama L, Breitwieser GE (1999) Dimerization of the CaSR occurs within the extracellular domain and is eliminated by Cys→Ser mutations at Cys101 and Cys236. J Biol Chem 274:11629–11634

    PubMed  CAS  Google Scholar 

  109. Paredes A, Plata C, Rivera M, Moreno E, Vazquez N, Munoz-Clares R, Hebert SC, Gamba G (2006) Activity of the renal Na+:K+:2Cl cotransporter is reduced by mutagenesis of N-glycosylation sites: role for protein surface charge in Cl transport. Am J Physiol Renal Physiol 290:F1094–F1102

    PubMed  CAS  Google Scholar 

  110. Parfitt AM, Kleerekoper M (1980) Clinical disorders of calcium, phosphorous, and magnesium metabolism. In: Maxwell MH, Kleeman CR (eds) Clinical disorders of fluid and electrolyte metabolism. McGraw-Hill Book Company, New York, pp 947–1151

    Google Scholar 

  111. Payne JA, Forbush IB (1994) Alternatively spliced isoforms of the putative renal Na–K–Cl cotransporter are differentially distributed within the rabbit kidney. Proc Natl Acad Sci U S A 91:4544–4548

    PubMed  CAS  Google Scholar 

  112. Plata C, Meade P, Hall AE, Welch RC, Vazquez N, Hebert SC, Gamba G (2001) Alternatively spliced isoform of the apical Na–K–Cl cotransporter gene encodes a furosemide sensitive Na–Cl cotransporter. Am J Physiol Renal Physiol 280:F574–F582

    PubMed  CAS  Google Scholar 

  113. Plata C, Meade P, Vazquez N, Hebert SC, Gamba G (2002) Functional properties of the apical Na+–K+–2Cl cotransporter isoforms. J Biol Chem 277:11004–11012

    PubMed  CAS  Google Scholar 

  114. Plata C, Mount DB, Rubio V, Hebert SC, Gamba G (1999) Isoforms of the Na–K–2Cl cotransporter in murine TAL. II. Functional characterization and activation by cAMP. Am J Physiol Renal Physiol 276:F359–F366

    CAS  Google Scholar 

  115. Pollak MR, Brown EM, Chou Y-HW, Hebert SC, Marx SJ, Steinmann B, Levi T, Seidman CE, Seidman JG (1993) Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75:1297–1303

    PubMed  CAS  Google Scholar 

  116. Pollak MR, Seidman CE, Brown EM (1996) Three inherited disorders of calcium sensing. Medicine 75:115–123

    PubMed  CAS  Google Scholar 

  117. Ponce-Coria J, San Cristobal P, Kahle KT, Vazquez N, Pacheco-Alvarez D, De Los HP, Juarez P, Munoz E, Michel G, Bobadilla NA, Gimenez I, Lifton RP, Hebert SC, Gamba G (2008) Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases. Proc Natl Acad Sci U S A 105:8458–8463

    PubMed  CAS  Google Scholar 

  118. Pressler CA, Heinzinger J, Jeck N, Waldegger P, Pechmann U, Reinalter S, Konrad M, Beetz R, Seyberth HW, Waldegger S (2006) Late-onset manifestation of antenatal Bartter syndrome as a result of residual function of the mutated renal Na+–K+–2Cl co-transporter. J Am Soc Nephrol 17:2136–2142

    PubMed  CAS  Google Scholar 

  119. Quamme GA (1982) Effect of hypercalcemia on renal tubular handling of calcium and magnesium. Can J Physiol Pharmacol 60:1275–1280

    PubMed  CAS  Google Scholar 

  120. Quamme GA (1989) Control of magnesium transport in the thick ascending limb. Am J Physiol 256:F197–F210

    PubMed  CAS  Google Scholar 

  121. Quinn SJ, Bai M, Brown EM (2004) pH Sensing by the calcium-sensing receptor. J Biol Chem 279:37241–37249

    PubMed  CAS  Google Scholar 

  122. Reeves WB, Winters CJ, Andreoli TE (2001) Chloride channels in the loop of Henle. Annu Rev Physiol 63:631–645

    PubMed  CAS  Google Scholar 

  123. Riccardi D, Hall AE, Chattopadhyay N, Xu JZ, Brown EM, Hebert SC (1998) Localization of the extracellular Ca2+/polyvalent cation-sensing protein in rat kidney. Am J Physiol Renal Physiol 274:F611–F622

    CAS  Google Scholar 

  124. Riccardi D, Hall AE, Chattopadhyay N, Xu JZ, Brown EM, Hebert SC (1998) Localization of the extracellular Ca2+ polyvalent cation-sensing protein in rat kidney. Am J Physiol Renal Physiol 274:F611–F622

    CAS  Google Scholar 

  125. Riccardi D, Lee WS, Lee K, Segre GV, Brown EM, Hebert SC (1996) Localization of the extracellular Ca2+-sensing receptor and PTH/PTHrP receptor in rat kidney. Am J Physiol 271:F951–F956

    PubMed  CAS  Google Scholar 

  126. Riccardi D, Park J, Lee W-S, Gamba G, Brown EM, Hebert SC (1995) Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor. Proc Natl Acad Sci USA 92:131–135

    PubMed  CAS  Google Scholar 

  127. Rinehart J, Kahle KT, De Los HP, Vazquez N, Meade P, Wilson FH, Hebert SC, Gimenez I, Gamba G, Lifton RP (2005) WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl− cotransporters required for normal blood pressure homeostasis. Proc Natl Acad Sci U S A 102:16777–16782

    PubMed  CAS  Google Scholar 

  128. Rocha AS, Kokko JP (1973) Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport. J Clin Invest 52:612–623

    PubMed  CAS  Google Scholar 

  129. Roman RM, Feranchak AP, Davison AK, Schwiebert EM, Fitz JG (1999) Evidence for Gd3+ inhibition of membrane ATP permeability and purinergic signaling. Am J Physiol 277:G1222–G1230

    PubMed  CAS  Google Scholar 

  130. Sands JM, Naruse M, Baum M, Jo I, Hebert SC, Brown EM, Harris HW (1997) Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest 99:1399–1405

    PubMed  CAS  Google Scholar 

  131. Sasaki S, Imai M (1980) Effects of vasopressin on water and NaCl transport across the in vitro perfused medullary thick ascending limb of Henle’s loop of mouse, rat, and rabbit kidneys. Pflugers Arch 383:215–221

    PubMed  CAS  Google Scholar 

  132. Shaer AJ (2001) Inherited primary renal tubular hypokalemic alkalosis: a review of Gitelman and Bartter syndromes. Am J Med Sci 322:316–332

    PubMed  CAS  Google Scholar 

  133. Shareghi GR, Agus ZS (1982) Magnesium transport in the cortical thick ascending limb of Henle’s loop of the rabbit. J Clin Invest 69:759–769

    PubMed  CAS  Google Scholar 

  134. Shull GE, Lane LK, Lingrel JB (1986) Amino-acid sequence of the β-subunit of the (Na+ + K+)ATPase deduced from a cDNA. Nature 321:429–431

    PubMed  CAS  Google Scholar 

  135. Shull GE, Schwartz A, Lingrel JB (1985) Amino-acid sequence of the catalytic subunit of the (Na+K+)ATPase deduced from a complementary DNA. Nature 316:691–695

    PubMed  CAS  Google Scholar 

  136. Simon DB, Karet FE, Hamdan JM, Di Pietro A, Sanjad SA, Lifton RP (1996) Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na–K–2Cl cotransporter NKCC2. Nat Genet 13:183–188

    PubMed  CAS  Google Scholar 

  137. Starremans PG, Kersten FF, Knoers NV, van den Heuvel LP, Bindels RJ (2003) Mutations in the human Na–K–2Cl cotransporter (NKCC2) identified in Bartter syndrome type I consistently result in nonfunctional transporters. J Am Soc Nephrol 14:1419–1426

    PubMed  Google Scholar 

  138. Starremans PG, Kersten FF, van den Heuvel LP, Knoers NV, Bindels RJ (2003) Dimeric architecture of the human bumetanide-sensitive Na–K–Cl Co-transporter. J Am Soc Nephrol 14:3039–3046

    PubMed  CAS  Google Scholar 

  139. Suki WN, Rouse D (1981) Hormonal regulation of calcium transport in thick ascending limb renal tubules. Am J Physiol 241:F171–F174

    PubMed  CAS  Google Scholar 

  140. Suki WN, Rouse D, Ng RCK, Kokko JP (1980) Calcium transport in the thick ascending limb of Henle. Heterogeneity of function in the medullary and cortical segments. J Clin Invest 66:1004–1009

    PubMed  CAS  Google Scholar 

  141. Sun A, Grossman EB, Lombardi M, Hebert SC (1991) Vasopressin alters the mechanism of apical Cl entry from Na+:Cl to Na+:K+:2Cl cotransport in mouse medullary thick ascending limb. J Membr Biol 120:83–94

    PubMed  CAS  Google Scholar 

  142. Takahashi N, Brooks HL, Wade JB, Liu W, Kondo Y, Ito S, Knepper MA, Smithies O (2002) Posttranscriptional compensation for heterozygous disruption of the kidney-specific NaK2Cl cotransporter gene. J Am Soc Nephrol 13:604–610

    PubMed  CAS  Google Scholar 

  143. Takahashi N, Chernavvsky DR, Gomez RA, Igarashi P, Gitelman HJ, Smithies O (2000) Uncompensated polyuria in a mouse model of Bartter’s syndrome. Proc Natl Acad Sci U S A 97:5434–5439

    PubMed  CAS  Google Scholar 

  144. Takaichi K, Kurokawa K (1986) High Ca2+ inhibits peptide hormone-dependent cAMP production specifically in thick ascending limbs of Henle. Miner Electrolyte Metab 12:342–346

    PubMed  CAS  Google Scholar 

  145. Takaichi K, Kurokawa K (1988) Inhibitory guanosine triphosphate-binding protein-mediated regulation of vasopressin action in isolated single medullary tubules of mouse kidney. J Clin Invest 82:1437–1444

    PubMed  CAS  Google Scholar 

  146. Tovar-Palacio C, Bobadilla NA, Cortes P, Plata C, De Los HP, Vazquez N, Gamba G (2004) Ion and diuretic specificity of chimeric proteins between apical Na+:K+:2Cl and Na+:Cl cotransporters. Am J Physiol Renal Physiol 287:F570–F577

    PubMed  CAS  Google Scholar 

  147. Vargas-Poussou R, Feldman D, Vollmer M, Konrad M, Kelly L, Van der Heuvel LPWJ, Tebouri L, Brandis M, Karolyi L, Hebert SC, Lemmink HH, Deschnes G, Hildebrandt F, Seyberth HW, Guay-Woodford LM, Knoers NVAM, Antignac C (1998) Novel molecular variants of the Na–K–2Cl cotransporter gene are responsible for antenatal Bartter syndrome. Am J Hum Genet 62:1332–1340

    PubMed  CAS  Google Scholar 

  148. Vargas-Poussou R, Feldmann D, Vollmer M, Konrad M, Kelly L, Van den Heuvel LPWJ, Tebourbi L, Brandis M, Karolyi L, Hebert SC, Lemmink HH, Deschênes G, Hildebrandt F, Seyberth HW, Guay-Woodford LM, Knoers NVAM, Antignac C (1998) Novel molecular variants of the Na–K–2Cl cotransporter gene are responsible for antenatal Bartter syndrome. Am J Hum Genet 62:1332–1340

    PubMed  CAS  Google Scholar 

  149. Vargas-Poussou R, Huang C, Hulin P, Houillier P, Jeunemaitre X, Paillard M, Planelles G, Dechaux M, Miller RT, Antignac C (2002) Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol 13:2259–2266

    PubMed  CAS  Google Scholar 

  150. Varrault A, Pena MSR, Goldsmith PK, Mithal A, Brown EM, Spiegel AM (1995) Expression of G protein a-subunits in bovine parathyroid. Endocrinology 136:4390–4396

    PubMed  CAS  Google Scholar 

  151. Waldegger S, Jeck N, Barth P, Peters M, Vitzthum H, Wolf K, Kurtz A, Konrad M, Seyberth HW (2002) Barttin increases surface expression and changes current properties of ClC–K channels. Pflugers Arch 444:411–418

    PubMed  CAS  Google Scholar 

  152. Wang D, An SJ, Wang WH, McGiff JC, Ferreri NR (2001) CaR-mediated COX-2 expression in primary cultured mTAL cells. Am J Physiol Renal Physiol 281:F658–F664

    PubMed  CAS  Google Scholar 

  153. Wang D, McGiff JC, Ferreri NR (2000) Regulation of cyclooxygenase isoforms in the renal thick ascending limb: effects of extracellular calcium. J Physiol Pharmacol 51:587–595

    PubMed  CAS  Google Scholar 

  154. Wang W, Lu M, Balazy M, Hebert SC (1997) Phospholipase A2 is involved in mediating the effect of extracellular Ca2+ on apical K+ channels in rat TAL. Am J Physiol 273:F421–F429

    PubMed  CAS  Google Scholar 

  155. Wang WH (2006) Regulation of ROMK (Kir1.1) channels: new mechanisms and aspects. Am J Physiol Renal Physiol 290:F14–F19

    PubMed  CAS  Google Scholar 

  156. Wang WH, Lu M, Hebert SC (1996) Cytochrome P-450 metabolites mediate extracellular Ca2+-induced inhibition of apical K+ channels in the TAL. Am J Physiol 271:C103–C111

    PubMed  CAS  Google Scholar 

  157. Ward DT (2004) Calcium receptor-mediated intracellular signalling. Cell Calcium 35:217–228

    PubMed  CAS  Google Scholar 

  158. Ward DT, McLarnon SJ, Riccardi D (2002) Aminoglycosides increase intracellular calcium levels and ERK activity in proximal tubular OK cells expressing the extracellular CaSR. J Am Soc Nephrol 13:1481–1489

    PubMed  CAS  Google Scholar 

  159. Watanabe S, Fukumoto S, Chang H, Takeuchi Y, Hasegawa Y, Okazaki R, Chikatsu N, Fujita T (2002) Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet 360:692–694

    PubMed  CAS  Google Scholar 

  160. Welker P, Boehlick A, Mutig K, Salanova M, Kahl T, Schlueter H, Blottner D, Ponce-Coria J, Gamba G, Bachmann S (2008) Renal Na–K–Cl cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent. Am J Physiol Renal Physiol 295:F978–F802

    Google Scholar 

  161. Xu JC, Lytle C, Zhu TT, Payne JA, Benz Jr E, Forbush IB (1994) Molecular cloning and functional expression of the bumetanide-sensitive Na–K–Cl cotransporter. Proc Natl Acad Sci U S A 91:2201–2205

    PubMed  CAS  Google Scholar 

  162. Yamaguchi T, Ye C, Chattopadhyay N, Sanders JL, Vassilev PM, Brown EM (2000) Enhanced expression of extracellular calcium sensing receptor in monocyte-differentiated versus undifferentiated HL-60 cells: potential role in regulation of a nonselective cation channel. Calcif Tissue Int 66:375–382

    PubMed  CAS  Google Scholar 

  163. Yang T, Huang YG, Singh I, Schnermann J, Briggs JP (1996) Localization of bumetanide- and thiazide-sensitive Na–K–Cl cotransporters along the rat nephron. Am J Physiol Renal Physiol 271:F931–F939

    CAS  Google Scholar 

  164. Zhang Z, Jiang Y, Quinn SJ, Krapcho K, Nemeth EF, Bai M (2002) l-Phenylalanine and NPS R-467 synergistically potentiate the function of the extracellular calcium-sensing receptor through distinct sites. J Biol Chem 277:33736–33741

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Original studies described here were supported by grants DK 54171 and DK 64635 from the National Institutes of Health to PAF and GG, respectively, CONACYT grant 59992 to GG, and by a grant from the Foundation Leducq for the Transatlantic Network on Hypertension—Renal Salt Handling in the Control of Blood Pressure (GG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Gamba.

Additional information

This review is dedicated to the memory of Dr. Steven C. Hebert. Dr. Hebert, our colleague and friend, was a leader in elucidating the mechanism and regulation of salt and water balance by the kidney. He embodied the foresight to anticipate many of the elements contributing to renal homeostasis, an infectious enthusiasm that inspired fellows and colleagues alike, and an open and welcoming collegiality that represents all the best traits of academia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamba, G., Friedman, P.A. Thick ascending limb: the Na+:K+:2Cl co-transporter, NKCC2, and the calcium-sensing receptor, CaSR. Pflugers Arch - Eur J Physiol 458, 61–76 (2009). https://doi.org/10.1007/s00424-008-0607-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0607-1

Keywords

Navigation