Skip to main content

Advertisement

Log in

Luminal Na+/H+ exchange in the proximal tubule

  • Transport Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The proximal tubule is critical for whole-organism volume and acid–base homeostasis by reabsorbing filtered water, NaCl, bicarbonate, and citrate, as well as by excreting acid in the form of hydrogen and ammonium ions and producing new bicarbonate in the process. Filtered organic solutes such as amino acids, oligopeptides, and proteins are also retrieved by the proximal tubule. Luminal membrane Na+/H+ exchangers either directly mediate or indirectly contribute to each of these processes. Na+/H+ exchangers are a family of secondary active transporters with diverse tissue and subcellular distributions. Two isoforms, NHE3 and NHE8, are expressed at the luminal membrane of the proximal tubule. NHE3 is the prevalent isoform in adults, is the most extensively studied, and is tightly regulated by a large number of agonists and physiological conditions acting via partially defined molecular mechanisms. Comparatively little is known about NHE8, which is highly expressed at the lumen of the neonatal proximal tubule and is mostly intracellular in adults. This article discusses the physiology of proximal Na+/H+ exchange, the multiple mechanisms of NHE3 regulation, and the reciprocal relationship between NHE3 and NHE8 at the lumen of the proximal tubule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brett CL, Donowitz M, Rao R (2005) Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288:C223–C239

    PubMed  CAS  Google Scholar 

  2. Chang AB, Lin R, Keith Studley W et al (2004) Phylogeny as a guide to structure and function of membrane transport proteins. Mol Membr Biol 21:171–181

    PubMed  CAS  Google Scholar 

  3. Bobulescu IA, Di Sole F, Moe OW (2005) Na+/H+ exchangers: physiology and link to hypertension and organ ischemia. Curr Opin Nephrol Hypertens 14:485–494

    Article  PubMed  CAS  Google Scholar 

  4. Orlowski J, Grinstein S (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 447:549–565

    PubMed  CAS  Google Scholar 

  5. Wang D, Hu J, Bobulescu IA et al (2007) A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC). Proc Natl Acad Sci USA 104:9325–9330

    PubMed  CAS  Google Scholar 

  6. Wang D, King SM, Quill TA et al (2003) A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility. Nat Cell Biol 5:1117–1122

    PubMed  CAS  Google Scholar 

  7. Fuster DG, Zhang J, Shi M et al (2008) Characterization of the sodium/hydrogen exchanger NHA2. J Am Soc Nephrol 19:1547–1556

    PubMed  CAS  Google Scholar 

  8. Xiang M, Feng M, Muend S et al (2007) A human Na+/H+ antiporter sharing evolutionary origins with bacterial NhaA may be a candidate gene for essential hypertension. Proc Natl Acad Sci USA 104:18677–18681

    PubMed  CAS  Google Scholar 

  9. Pitts RF, Ayer JL, Schiess WA et al (1949) The renal regulation of acid-base balance in man. III. The reabsorption and excretion of bicarbonate. J Clin Invest 28:35–44

    CAS  Google Scholar 

  10. Pitts RF, Lotspeich WD (1946) Bicarbonate and the renal regulation of acid base balance. Am J Physiol 147:138–154

    CAS  Google Scholar 

  11. Giebisch G (2004) Two classic papers in acid–base physiology: contributions of R. F. Pitts, R. S. Alexander, and W. D. Lotspeich. Am J Physiol Renal Physiol 287:F864–F865

    PubMed  CAS  Google Scholar 

  12. Murer H, Hopfer U, Kinne R (1976) Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem J 154:597–604

    PubMed  CAS  Google Scholar 

  13. Kinsella JL, Aronson PS (1980) Properties of the Na+–H+ exchanger in renal microvillus membrane vesicles. Am J Physiol 238:F461–F469

    PubMed  CAS  Google Scholar 

  14. Sardet C, Franchi A, Pouyssegur J (1989) Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell 56:271–280

    PubMed  CAS  Google Scholar 

  15. Tse CM, Brant SR, Walker MS et al (1992) Cloning and sequencing of a rabbit cDNA encoding an intestinal and kidney-specific Na+/H+ exchanger isoform (NHE-3). J Biol Chem 267:9340–9346

    PubMed  CAS  Google Scholar 

  16. Orlowski J, Kandasamy RA, Shull GE (1992) Molecular cloning of putative members of the Na/H exchanger gene family. cDNA cloning, deduced amino acid sequence, and mRNA tissue expression of the rat Na/H exchanger NHE-1 and two structurally related proteins. J Biol Chem 267:9331–9339

    PubMed  CAS  Google Scholar 

  17. Biemesderfer D, Pizzonia J, Abu-Alfa A et al (1993) NHE3: a Na+/H+ exchanger isoform of renal brush border. Am J Physiol 265:F736–F742

    PubMed  CAS  Google Scholar 

  18. Amemiya M, Loffing J, Lotscher M et al (1995) Expression of NHE-3 in the apical membrane of rat renal proximal tubule and thick ascending limb. Kidney Int 48:1206–1215

    PubMed  CAS  Google Scholar 

  19. Wu MS, Biemesderfer D, Giebisch G et al (1996) Role of NHE3 in mediating renal brush border Na+–H+ exchange. Adaptation to metabolic acidosis. J Biol Chem 271:32749–32752

    PubMed  CAS  Google Scholar 

  20. Goyal S, Vanden Heuvel G, Aronson PS (2003) Renal expression of novel Na+/H+ exchanger isoform NHE8. Am J Physiol Renal Physiol 284:F467–F473

    PubMed  CAS  Google Scholar 

  21. Goyal S, Mentone S, Aronson PS (2005) Immunolocalization of NHE8 in rat kidney. Am J Physiol Renal Physiol 288:F530–F538

    PubMed  CAS  Google Scholar 

  22. Becker AM, Zhang J, Goyal S et al (2007) Ontogeny of NHE8 in the rat proximal tubule. Am J Physiol Renal Physiol 293:F255–F261

    PubMed  CAS  Google Scholar 

  23. Baum M (2008) Developmental changes in proximal tubule NaCl transport. Pediatr Nephrol 23:185–194

    PubMed  Google Scholar 

  24. Chambrey R, St John PL, Eladari D et al (2001) Localization and functional characterization of Na+/H+ exchanger isoform NHE4 in rat thick ascending limbs. Am J Physiol Renal Physiol 281:F707–F717

    PubMed  CAS  Google Scholar 

  25. Pizzonia JH, Biemesderfer D, Abu-Alfa AK et al (1998) Immunochemical characterization of Na+/H+ exchanger isoform NHE4. Am J Physiol Renal Physiol 275:F510–F517

    CAS  Google Scholar 

  26. Preisig PA, Rector FC Jr (1988) Role of Na+–H+ antiport in rat proximal tubule NaCl absorption. Am J Physiol 255:F461–F465

    PubMed  CAS  Google Scholar 

  27. Aronson PS (1996) Role of ion exchangers in mediating NaCl transport in the proximal tubule. Kidney Int 49:1665–1670

    PubMed  CAS  Google Scholar 

  28. Aronson PS, Giebisch G (1997) Mechanisms of chloride transport in the proximal tubule. Am J Physiol Renal Physiol 273:F179–F192

    CAS  Google Scholar 

  29. Alpern RJ, Howlin KJ, Preisig PA (1985) Active and passive components of chloride transport in the rat proximal convoluted tubule. J Clin Invest 76:1360–1366

    PubMed  CAS  Google Scholar 

  30. Chantrelle BM, Cogan MG, Rector FC Jr (1985) Active and passive components of NaCl absorption in the proximal convoluted tubule of the rat kidney. Miner Electrolyte Metab 11:209–214

    PubMed  CAS  Google Scholar 

  31. Nielsen S, Smith BL, Christensen EI et al (1993) CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J Cell Biol 120:371–383

    PubMed  CAS  Google Scholar 

  32. Nielsen S, Marples D, Frokiaer J et al (1996) The aquaporin family of water channels in kidney: an update on physiology and pathophysiology of aquaporin-2. Kidney Int 49:1718–1723

    PubMed  CAS  Google Scholar 

  33. Preisig PA, Berry CA (1985) Evidence for transcellular osmotic water flow in rat proximal tubules. Am J Physiol 249:F124–F131

    PubMed  CAS  Google Scholar 

  34. Schnermann J, Chou CL, Ma T et al (1998) Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc Natl Acad Sci USA 95:9660–9664

    PubMed  CAS  Google Scholar 

  35. Alpern RJ (1990) Cell mechanisms of proximal tubule acidification. Physiol Rev 70:79–114

    PubMed  CAS  Google Scholar 

  36. Preisig PA, Ives HE, Cragoe EJ Jr et al (1987) Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption. J Clin Invest 80:970–978

    PubMed  CAS  Google Scholar 

  37. Boron WF (2006) Acid–base transport by the renal proximal tubule. J Am Soc Nephrol 17:2368–2382

    PubMed  CAS  Google Scholar 

  38. DuBose TD Jr (1990) Reclamation of filtered bicarbonate. Kidney Int 38:584–589

    PubMed  CAS  Google Scholar 

  39. Halperin ML, Ethier JH, Kamel KS (1990) The excretion of ammonium ions and acid base balance. Clin Biochem 23:185–188

    PubMed  CAS  Google Scholar 

  40. Nagami GT (1989) Ammonia production and secretion by the proximal tubule. Am J Kidney Dis 14:258–261

    PubMed  CAS  Google Scholar 

  41. Weiner ID, Hamm LL (2007) Molecular mechanisms of renal ammonia transport. Annu Rev Physiol 69:317–340

    PubMed  CAS  Google Scholar 

  42. Preisig PA, Alpern RJ (1991) Basolateral membrane H/HCO3 transport in renal tubules. Kidney Int 39:1077–1086

    PubMed  CAS  Google Scholar 

  43. Liu FY, Cogan MG (1984) Axial heterogeneity in the rat proximal convoluted tubule. I. Bicarbonate, chloride, and water transport. Am J Physiol Renal Physiol 247:F816–F821

    CAS  Google Scholar 

  44. Maddox DA, Gennari FJ (1985) Load dependence of HCO3 and H2O reabsorption in the early proximal tubule of the Munich-Wistar rat. Am J Physiol Renal Physiol 248:F113–F121

    CAS  Google Scholar 

  45. Maddox DA, Gennari FJ (1987) The early proximal tubule: a high-capacity delivery-responsive reabsorptive site. Am J Physiol 252:F573–F584

    PubMed  CAS  Google Scholar 

  46. Schild L, Giebisch G, Green R (1988) Chloride transport in the proximal renal tubule. Annu Rev Physiol 50:97–110

    PubMed  CAS  Google Scholar 

  47. Kinsella JL, Aronson PS (1981) Interaction of NH4+ and Li+ with the renal microvillus membrane Na+–H+ exchanger. Am J Physiol 241:C220–C226

    PubMed  CAS  Google Scholar 

  48. Nagami GT (1988) Luminal secretion of ammonia in the mouse proximal tubule perfused in vitro. J Clin Invest 81:159–164

    PubMed  CAS  Google Scholar 

  49. Brennan S, Hering-Smith K, Hamm LL (1988) Effect of pH on citrate reabsorption in the proximal convoluted tubule. Am J Physiol 255:F301–F306

    PubMed  CAS  Google Scholar 

  50. Sekine T, Cha SH, Hosoyamada M et al (1998) Cloning, functional characterization, and localization of a rat renal Na+-dicarboxylate transporter. Am J Physiol Renal Physiol 275:F298–F305

    CAS  Google Scholar 

  51. Chen XZ, Shayakul C, Berger UV et al (1998) Characterization of a rat Na+-dicarboxylate cotransporter. J Biol Chem 273:20972–20981

    PubMed  CAS  Google Scholar 

  52. Schultheis PJ, Clarke LL, Meneton P et al (1998) Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 19:282–285

    PubMed  CAS  Google Scholar 

  53. Woo AL, Noonan WT, Schultheis PJ et al (2003) Renal function in NHE3-deficient mice with transgenic rescue of small intestinal absorptive defect. Am J Physiol Renal Physiol 284:F1190–F1198

    PubMed  CAS  Google Scholar 

  54. Noonan WT, Woo AL, Nieman ML et al (2005) Blood pressure maintenance in NHE3-deficient mice with transgenic expression of NHE3 in small intestine. Am J Physiol Regul Integr Comp Physiol 288:R685–R691

    PubMed  CAS  Google Scholar 

  55. Daniel H, Spanier B, Kottra G et al (2006) From bacteria to man: archaic proton-dependent peptide transporters at work. Physiology 21:93–102

    PubMed  CAS  Google Scholar 

  56. Daniel H, Rubio-Aliaga I (2003) An update on renal peptide transporters. Am J Physiol Renal Physiol 284:F885–F892

    PubMed  CAS  Google Scholar 

  57. Watanabe C, Kato Y, Ito S et al (2005) Na+/H+ exchanger 3 affects transport property of H+/oligopeptide transporter 1. Drug Metab Pharmacokinet 20:443–451

    PubMed  CAS  Google Scholar 

  58. Comper WD, Haraldsson B, Deen WM (2008) Resolved: normal glomeruli filter nephrotic levels of albumin. J Am Soc Nephrol 19:427–432

    PubMed  Google Scholar 

  59. Biemesderfer D, Nagy T, DeGray B et al (1999) Specific association of megalin and the Na+/H+ exchanger isoform NHE3 in the proximal tubule. J Biol Chem 274:17518–17524

    PubMed  CAS  Google Scholar 

  60. D’Souza S, Garcia-Cabado A, Yu F et al (1998) The epithelial sodium–hydrogen antiporter Na+/H+ exchanger 3 accumulates and is functional in recycling endosomes. J Biol Chem 273:2035–2043

    PubMed  Google Scholar 

  61. Gekle M (2005) Renal tubule albumin transport. Annu Rev Physiol 67:573–594

    PubMed  CAS  Google Scholar 

  62. Gekle M, Drumm K, Mildenberger S et al (1999) Inhibition of Na+–H+ exchange impairs receptor-mediated albumin endocytosis in renal proximal tubule-derived epithelial cells from opossum. J Physiol 520:709–721

    PubMed  CAS  Google Scholar 

  63. Gekle M, Volker K, Mildenberger S et al (2004) NHE3 Na+/H+ exchanger supports proximal tubular protein reabsorption in vivo. Am J Physiol Renal Physiol 287:F469–F473

    PubMed  CAS  Google Scholar 

  64. Zhai XY, Nielsen R, Birn H et al (2000) Cubilin- and megalin-mediated uptake of albumin in cultured proximal tubule cells of opossum kidney. Kidney Int 58:1523–1533

    PubMed  CAS  Google Scholar 

  65. Klisic J, Zhang J, Nief V et al (2003) Albumin regulates the Na+/H+ exchanger 3 in OKP cells. J Am Soc Nephrol 14:3008–3016

    PubMed  CAS  Google Scholar 

  66. Leheste JR, Rolinski B, Vorum H et al (1999) Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol 155:1361–1370

    PubMed  CAS  Google Scholar 

  67. Kantarci S, Al-Gazali L, Hill RS et al (2007) Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai-Barrow and facio-oculo-acoustico-renal syndromes. Nat Genet 39:957–959

    PubMed  CAS  Google Scholar 

  68. Hayashi H, Szaszi K, Grinstein S (2002) Multiple modes of regulation of Na+/H+ exchangers. Ann N Y Acad Sci 976:248–258

    Article  PubMed  CAS  Google Scholar 

  69. Bobulescu IA, Moe OW (2006) Na+/H+ exchangers in renal regulation of acid–base balance. Semin Nephrol 26:334–344

    PubMed  CAS  Google Scholar 

  70. Donowitz M, Li X (2007) Regulatory binding partners and complexes of NHE3. Physiol Rev 87:825–872

    PubMed  CAS  Google Scholar 

  71. Laghmani K, Borensztein P, Ambuhl P et al (1997) Chronic metabolic acidosis enhances NHE-3 protein abundance and transport activity in the rat thick ascending limb by increasing NHE-3 mRNA. J Clin Invest 99:24–30

    PubMed  CAS  Google Scholar 

  72. Baum M, Amemiya M, Dwarakanath V et al (1996) Glucocorticoids regulate NHE-3 transcription in OKP cells. Am J Physiol 270:F164–F169

    PubMed  CAS  Google Scholar 

  73. Klisic J, Hu MC, Nief V et al (2002) Insulin activates Na(+)/H(+) exchanger 3: biphasic response and glucocorticoid dependence. Am J Physiol Renal Physiol 283:F532–F539

    PubMed  CAS  Google Scholar 

  74. Cano A, Baum M, Moe OW (1999) Thyroid hormone stimulates the renal Na/H exchanger NHE3 by transcriptional activation. Am J Physiol 276:C102–C108

    PubMed  CAS  Google Scholar 

  75. Yonemura K, Cheng L, Sacktor B et al (1990) Stimulation by thyroid hormone of Na+–H+ exchange activity in cultured opossum kidney cells. Am J Physiol Renal Physiol 258:F333–F338

    CAS  Google Scholar 

  76. Azuma KK, Balkovetz DF, Magyar CE et al (1996) Renal Na+/H+ exchanger isoforms and their regulation by thyroid hormone. Am J Physiol 270:C585–C592

    PubMed  CAS  Google Scholar 

  77. Horie S, Moe O, Yamaji Y et al (1992) Role of protein kinase C and transcription factor AP-1 in the acid-induced increase in Na/H antiporter activity. Proc Natl Acad Sci USA 89:5236–5240

    PubMed  CAS  Google Scholar 

  78. Kandasamy RA, Orlowski J (1996) Genomic organization and glucocorticoid transcriptional activation of the rat Na+/H+ exchanger Nhe3 gene. J Biol Chem 271:10551–10559

    PubMed  CAS  Google Scholar 

  79. Ambuhl PM, Yang X, Peng Y et al (1999) Glucocorticoids enhance acid activation of the Na+/H+ exchanger 3 (NHE3). J Clin Invest 103:429–435

    PubMed  CAS  Google Scholar 

  80. Di Sole F, Cerull R, Babich V et al (2008) Short- and long-term A3 adenosine receptor activation inhibits the Na+/H+ exchanger NHE3 activity and expression in opossum kidney cells. J Cell Physiol 216:221–233

    PubMed  Google Scholar 

  81. Turban S, Wang XY, Knepper MA (2003) Regulation of NHE3, NKCC2, and NCC abundance in kidney during aldosterone escape phenomenon: role of NO. Am J Physiol Renal Physiol 285:F843–F851

    PubMed  CAS  Google Scholar 

  82. Zhao H, Wiederkehr MR, Fan L et al (1999) Acute inhibition of Na/H exchanger NHE-3 by cAMP. Role of protein kinase a and NHE-3 phosphoserines 552 and 605. J Biol Chem 274:3978–3987

    PubMed  CAS  Google Scholar 

  83. Hu MC, Fan L, Crowder LA et al (2001) Dopamine acutely stimulates Na+/H+ exchanger (NHE3) endocytosis via clathrin-coated vesicles: dependence on protein kinase A-mediated NHE3 phosphorylation. J Biol Chem 276:26906–26915

    PubMed  CAS  Google Scholar 

  84. Peng Y, Moe OW, Chu T et al (1999) ETB receptor activation leads to activation and phosphorylation of NHE3. Am J Physiol 276:C938–C945

    PubMed  CAS  Google Scholar 

  85. Collazo R, Fan L, Hu MC et al (2000) Acute regulation of Na+/H+ exchanger NHE3 by parathyroid hormone via NHE3 phosphorylation and dynamin-dependent endocytosis. J Biol Chem 275:31601–31608

    PubMed  CAS  Google Scholar 

  86. Wiederkehr MR, Zhao H, Moe OW (1999) Acute regulation of Na/H exchanger NHE3 activity by protein kinase C: role of NHE3 phosphorylation. Am J Physiol 276:C1205–C1217

    PubMed  CAS  Google Scholar 

  87. Wiederkehr MR, Di Sole F, Collazo R et al (2001) Characterization of acute inhibition of Na/H exchanger NHE-3 by dopamine in opossum kidney cells. Kidney Int 59:197–209

    PubMed  CAS  Google Scholar 

  88. Kocinsky HS, Girardi AC, Biemesderfer D et al (2005) Use of phospho-specific antibodies to determine the phosphorylation of endogenous Na+/H+ exchanger NHE3 at PKA consensus sites. Am J Physiol Renal Physiol 289:F249–F258

    PubMed  CAS  Google Scholar 

  89. Sarker R, Gronborg M, Cha B et al (2008) CK2 binds to the C-terminus of NHE3 and stimulates NHE3 basal activity by phosphorylating a separate site in NHE3. Mol Biol Cell 19:3859–3870

    PubMed  CAS  Google Scholar 

  90. Yang X, Amemiya M, Peng Y et al (2000) Acid incubation causes exocytic insertion of NHE3 in OKP cells. Am J Physiol Cell Physiol 279:C410–C419

    PubMed  CAS  Google Scholar 

  91. Peng Y, Amemiya M, Yang X et al (2001) ET(B) receptor activation causes exocytic insertion of NHE3 in OKP cells. Am J Physiol Renal Physiol 280:F34–F42

    PubMed  CAS  Google Scholar 

  92. Bobulescu IA, Dwarakanath V, Zou L et al (2005) Glucocorticoids acutely increase cell surface Na+/H+ exchanger-3 (NHE3) by activation of NHE3 exocytosis. Am J Physiol Renal Physiol 289:F685–F691

    PubMed  CAS  Google Scholar 

  93. Akhter S, Kovbasnjuk O, Li X et al (2002) Na(+)/H(+) exchanger 3 is in large complexes in the center of the apical surface of proximal tubule-derived OK cells. Am J Physiol Cell Physiol 283:C927–C940

    PubMed  CAS  Google Scholar 

  94. Murtazina R, Kovbasnjuk O, Donowitz M et al (2006) Na+/H+ exchanger NHE3 activity and trafficking are lipid Raft-dependent. J Biol Chem 281:17845–17855

    PubMed  CAS  Google Scholar 

  95. Yang LE, Maunsbach AB, Leong PK et al (2004) Differential traffic of proximal tubule Na+ transporters during hypertension or PTH: NHE3 to base of microvilli vs. NaPi2 to endosomes. Am J Physiol Renal Physiol 287:F896–F906

    PubMed  CAS  Google Scholar 

  96. Leong PK, Yang LE, Lin HW et al (2004) Acute hypotension induced by aortic clamp vs PTH provokes distinct proximal tubule Na+ transporter redistribution patterns. Am J Physiol Regul Integr Comp Physiol 287:R878–R885

    PubMed  CAS  Google Scholar 

  97. Yang LE, Zhong H, Leong PK et al (2003) Chronic renal injury-induced hypertension alters renal NHE3 distribution and abundance. Am J Physiol Renal Physiol 284:F1056–F1065

    PubMed  CAS  Google Scholar 

  98. Moe OW (1999) Acute regulation of proximal tubule apical membrane Na/H exchanger NHE-3: role of phosphorylation, protein trafficking, and regulatory factors. J Am Soc Nephrol 10:2412–2425

    PubMed  CAS  Google Scholar 

  99. McDonough AA, Biemesderfer D (2003) Does membrane trafficking play a role in regulating the sodium/hydrogen exchanger isoform 3 in the proximal tubule? Curr Opin Nephrol Hypertens 12:533–541

    PubMed  CAS  Google Scholar 

  100. Cano A (1996) Characterization of the rat NHE3 promoter. Am J Physiol 271:F629–F636

    PubMed  CAS  Google Scholar 

  101. Malakooti J, Sandoval R, Amin MR et al (2006) Transcriptional stimulation of the human NHE3 promoter activity by PMA: PKC independence and involvement of the transcription factor EGR-1. Biochem J 396:327–336

    PubMed  CAS  Google Scholar 

  102. Malakooti J, Memark VC, Dudeja PK et al (2002) Molecular cloning and functional analysis of the human Na(+)/H(+) exchanger NHE3 promoter. Am J Physiol Gastrointest Liver Physiol 282:G491–G500

    PubMed  CAS  Google Scholar 

  103. Kurashima K, Yu FH, Cabado AG et al (1997) Identification of sites required for down-regulation of Na+/H+ exchanger NHE3 activity by cAMP-dependent protein kinase. phosphorylation-dependent and -independent mechanisms. J Biol Chem 272:28672–28679

    PubMed  CAS  Google Scholar 

  104. Yip JW, Ko WH, Viberti G et al (1997) Regulation of the epithelial brush border Na+/H+ exchanger isoform 3 stably expressed in fibroblasts by fibroblast growth factor and phorbol esters is not through changes in phosphorylation of the exchanger. J Biol Chem 272:18473–18480

    PubMed  CAS  Google Scholar 

  105. Kocinsky HS, Dynia DW, Wang T et al (2007) NHE3 phosphorylation at serines 552 and 605 does not directly affect NHE3 activity. Am J Physiol Renal Physiol 293:F212–F218

    PubMed  CAS  Google Scholar 

  106. Chow CW, Khurana S, Woodside M et al (1999) The epithelial Na(+)/H(+) exchanger, NHE3, is internalized through a clathrin-mediated pathway. J Biol Chem 274:37551–37558

    PubMed  CAS  Google Scholar 

  107. Alexander RT, Furuya W, Szaszi K et al (2005) Rho GTPases dictate the mobility of the Na/H exchanger NHE3 in epithelia: role in apical retention and targeting. Proc Natl Acad Sci USA 102:12253–12258

    PubMed  CAS  Google Scholar 

  108. Lee-Kwon W, Kawano K, Choi JW et al (2003) Lysophosphatidic acid stimulates brush border Na+/H+ exchanger 3 (NHE3) activity by increasing its exocytosis by an NHE3 kinase A regulatory protein-dependent mechanism. J Biol Chem 278:16494–16501

    PubMed  CAS  Google Scholar 

  109. Choi JW, Lee-Kwon W, Jeon ES et al (2004) Lysophosphatidic acid induces exocytic trafficking of Na(+)/H(+) exchanger 3 by E3KARP-dependent activation of phospholipase C. Biochim Biophys Acta 1683:59–68

    PubMed  CAS  Google Scholar 

  110. du Cheyron D, Chalumeau C, Defontaine N et al (2003) Angiotensin II stimulates NHE3 activity by exocytic insertion of the transporter: role of PI 3-kinase. Kidney Int 64:939–949

    PubMed  CAS  Google Scholar 

  111. Kurashima K, Szabo EZ, Lukacs G et al (1998) Endosomal recycling of the Na+/H+ exchanger NHE3 isoform is regulated by the phosphatidylinositol 3-kinase pathway. J Biol Chem 273:20828–20836

    PubMed  CAS  Google Scholar 

  112. Leiderman L, Tucker J, Dennis V (1989) Characterization of proliferation and differentiation of opossum kidney cells in a serum-free defined medium. In Vitro Cell Dev Biol Plant 25:881–886

    CAS  Google Scholar 

  113. Yang LE, Leong PK, McDonough AA (2007) Reducing blood pressure in SHR with enalapril provokes redistribution of NHE3, NaPi2, and NCC and decreases NaPi2 and ACE abundance. Am J Physiol Renal Physiol 293:F1197–F1208

    PubMed  CAS  Google Scholar 

  114. Yang LE, Leong PK, Ye S et al (2003) Responses of proximal tubule sodium transporters to acute injury-induced hypertension. Am J Physiol Renal Physiol 284:F313–F322

    PubMed  CAS  Google Scholar 

  115. Yip KP, Tse CM, McDonough AA et al (1998) Redistribution of Na+/H+ exchanger isoform NHE3 in proximal tubules induced by acute and chronic hypertension. Am J Physiol 275:F565–F575

    PubMed  CAS  Google Scholar 

  116. Zhang Y, Mircheff AK, Hensley CB et al (1996) Rapid redistribution and inhibition of renal sodium transporters during acute pressure natriuresis. Am J Physiol 270:F1004–F1014

    PubMed  CAS  Google Scholar 

  117. Fuster D, Moe OW, Hilgemann DW (2004) Lipid- and mechanosensitivities of sodium/hydrogen exchangers analyzed by electrical methods. Proc Natl Acad Sci USA 101:10482–10487

    PubMed  CAS  Google Scholar 

  118. Biemesderfer D, DeGray B, Aronson PS (2001) Active (9.6 S) and inactive (21 S) oligomers of NHE3 in microdomains of the renal brush border. J. Biol. Chem. 276:10161–10167

    PubMed  CAS  Google Scholar 

  119. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    PubMed  CAS  Google Scholar 

  120. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    PubMed  CAS  Google Scholar 

  121. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    PubMed  CAS  Google Scholar 

  122. Zajchowski LD, Robbins SM (2002) Lipid rafts and little caves. Compartmentalized signalling in membrane microdomains. Eur J Biochem 269:737–752

    PubMed  CAS  Google Scholar 

  123. Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    PubMed  CAS  Google Scholar 

  124. Edidin M (2003) The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32:257–283

    PubMed  CAS  Google Scholar 

  125. Matko J, Szollosi J (2002) Landing of immune receptors and signal proteins on lipid rafts: a safe way to be spatio-temporally coordinated? Immunol Lett 82:3–15

    PubMed  CAS  Google Scholar 

  126. Cabado AG, Yu FH, Kapus A et al (1996) Distinct structural domains confer cAMP sensitivity and ATP dependence to the Na+/H+ exchanger NHE3 isoform. J Biol Chem 271:3590–3599

    PubMed  CAS  Google Scholar 

  127. Yun CH, Tse CM, Donowitz M (1995) Chimeric Na+/H+ exchangers: an epithelial membrane-bound N-terminal domain requires an epithelial cytoplasmic C-terminal domain for regulation by protein kinases. Proc Natl Acad Sci USA 92:10723–10727

    PubMed  CAS  Google Scholar 

  128. Moe OW (2003) Scaffolds: Orchestrating proteins to achieve concerted function. Kidney Int 64:1916–1917

    PubMed  Google Scholar 

  129. Hisamitsu T, Pang T, Shigekawa M et al (2004) Dimeric interaction between the cytoplasmic domains of the Na+/H+ exchanger NHE1 revealed by symmetrical intermolecular cross-linking and selective co-immunoprecipitation. Biochemistry 43:11135–11143

    PubMed  CAS  Google Scholar 

  130. Hisamitsu T, Ben Ammar Y, Nakamura TY et al (2006) Dimerization is crucial for the function of the Na+/H+ exchanger NHE1. Biochemistry 45:13346–13355

    PubMed  CAS  Google Scholar 

  131. Green J, Yamaguchi DT, Kleeman CR et al (1988) Cytosolic pH regulation in osteoblasts. Interaction of Na+ and H+ with the extracellular and intracellular faces of the Na+/H+ exchanger. J Gen Physiol 92:239–261

    PubMed  CAS  Google Scholar 

  132. Moncoq K, Kemp G, Li X et al (2008) Dimeric structure of human Na+/H+ exchanger isoform 1 overproduced in Saccharomyces cerevisiae. J Biol Chem 283:4145–4154

    PubMed  CAS  Google Scholar 

  133. Fafournoux P, Noel J, Pouyssegur J (1994) Evidence that Na+/H+ exchanger isoforms NHE1 and NHE3 exist as stable dimers in membranes with a high degree of specificity for homodimers. J Biol Chem 269:2589–2596

    PubMed  CAS  Google Scholar 

  134. Otsu K, Kinsella J, Sacktor B et al (1989) Transient state kinetic evidence for an oligomer in the mechanism of Na+–H+ exchange. Proc Natl Acad Sci USA 86:4818–4822

    PubMed  CAS  Google Scholar 

  135. Otsu K, Kinsella JL, Heller P et al (1993) Sodium dependence of the Na(+)–H(+) exchanger in the pre-steady state. Implications for the exchange mechanism. J Biol Chem 268:3184–3193

    PubMed  CAS  Google Scholar 

  136. Fuster D, Moe OW, Hilgemann DW (2008) Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry. J Gen Physiol 132:465–480

    PubMed  CAS  Google Scholar 

  137. Baum M, Moe OW, Gentry DL et al (1994) Effect of glucocorticoids on renal cortical NHE-3 and NHE-1 mRNA. Am J Physiol 267:F437–F442

    PubMed  CAS  Google Scholar 

  138. Baum M, Cano A, Alpern RJ (1993) Glucocorticoids stimulate Na+/H+ antiporter in OKP cells. Am J Physiol 264:F1027–F1031

    PubMed  CAS  Google Scholar 

  139. Wang D, Sun H, Lang F et al (2005) Activation of NHE3 by dexamethasone requires phosphorylation of NHE3 at Ser663 by SGK1. Am J Physiol Cell Physiol 289:C802–C810

    PubMed  CAS  Google Scholar 

  140. Wang D, Zhang H, Lang F et al (2007) Acute activation of NHE3 by dexamethasone correlates with activation of SGK1 and requires a functional glucocorticoid receptor. Am J Physiol Cell Physiol 292:C396–C404

    PubMed  CAS  Google Scholar 

  141. Baum M (1987) Insulin stimulates volume absorption in the rabbit proximal convoluted tubule. J Clin Invest 79:1104–1109

    PubMed  CAS  Google Scholar 

  142. Fuster DG, Bobulescu IA, Zhang J et al (2007) Characterization of the regulation of renal Na+/H+ exchanger NHE3 by insulin. Am J Physiol Renal Physiol 292:F577–F585

    PubMed  CAS  Google Scholar 

  143. Preisig PA (2007) The acid-activated signaling pathway: starting with Pyk2 and ending with increased NHE3 activity. Kidney Int 72:1324–1329

    PubMed  CAS  Google Scholar 

  144. Kinsella J, Cujdik T, Sacktor B (1984) Na+–H+ exchange activity in renal brush border membrane vesicles in response to metabolic acidosis: the role of glucocorticoids. Proc Natl Acad Sci USA 81:630–634

    PubMed  CAS  Google Scholar 

  145. Battaglino RA, Pham L, Morse LR et al (2008) NHA-oc/NHA2: a mitochondrial cation–proton antiporter selectively expressed in osteoclasts. Bone 42:180–192

    PubMed  CAS  Google Scholar 

  146. Lorenz JN, Schultheis PJ, Traynor T et al (1999) Micropuncture analysis of single-nephron function in NHE3-deficient mice. Am J Physiol 277:F447–F453

    PubMed  CAS  Google Scholar 

  147. Horster M (2000) Embryonic epithelial membrane transporters. Am J Physiol Renal Physiol 279:F982–F996

    PubMed  CAS  Google Scholar 

  148. Edelmann CM, Soriano JR, Boichis H et al (1967) Renal bicarbonate reabsorption and hydrogen ion excretion in normal infants. J Clin Invest 46:1309–1317

    PubMed  CAS  Google Scholar 

  149. Schwartz GJ, Haycock GB, Edelmann CM Jr. et al (1979) Late metabolic acidosis: a reassessment of the definition. J Pediatr 95:102–107

    PubMed  CAS  Google Scholar 

  150. Schwartz GJ, Evan AP (1983) Development of solute transport in rabbit proximal tubule. I. HCO-3 and glucose absorption. Am J Physiol 245:F382–F390

    PubMed  CAS  Google Scholar 

  151. Baum M, Quigley R (1991) Prenatal glucocorticoids stimulate neonatal juxtamedullary proximal convoluted tubule acidification. Am J Physiol 261:F746–F752

    PubMed  CAS  Google Scholar 

  152. Baum M (1992) Developmental changes in rabbit juxtamedullary proximal convoluted tubule acidification. Pediatr Res 31:411–414

    PubMed  CAS  Google Scholar 

  153. Baum M, Biemesderfer D, Gentry D et al (1995) Ontogeny of rabbit renal cortical NHE3 and NHE1: effect of glucocorticoids. Am J Physiol 268:F815–F820

    PubMed  CAS  Google Scholar 

  154. Beck JC, Lipkowitz MS, Abramson RG (1991) Ontogeny of Na/H antiporter activity in rabbit renal brush border membrane vesicles. J Clin Invest 87:2067–2076

    PubMed  CAS  Google Scholar 

  155. Baum M (1990) Neonatal rabbit juxtamedullary proximal convoluted tubule acidification. J Clin Invest 85:499–506

    PubMed  CAS  Google Scholar 

  156. Preisig PA, Alpern RJ (1988) Chronic metabolic acidosis causes an adaptation in the apical membrane Na/H antiporter and basolateral membrane Na(HCO3)3 symporter in the rat proximal convoluted tubule. J Clin Invest 82:1445–1453

    PubMed  CAS  Google Scholar 

  157. Wang T, Yang CL, Abbiati T et al (1999) Mechanism of proximal tubule bicarbonate absorption in NHE3 null mice. Am J Physiol 277:F298–F302

    PubMed  CAS  Google Scholar 

  158. Biemesderfer D, Rutherford PA, Nagy T et al (1997) Monoclonal antibodies for high-resolution localization of NHE3 in adult and neonatal rat kidney. Am J Physiol 273:F289–F299

    PubMed  CAS  Google Scholar 

  159. Shah M, Gupta N, Dwarakanath V et al (2000) Ontogeny of Na+/H+ antiporter activity in rat proximal convoluted tubules. Pediatr Res 48:206–210

    PubMed  CAS  Google Scholar 

  160. Choi JY, Shah M, Lee MG et al (2000) Novel amiloride-sensitive sodium-dependent proton secretion in the mouse proximal convoluted tubule. J Clin Invest 105:1141–1146

    PubMed  CAS  Google Scholar 

  161. Henning SJ (1978) Plasma concentrations of total and free corticosterone during development in the rat. Am J Physiol 235:E451–E456

    PubMed  CAS  Google Scholar 

  162. Walker P, Dubois JD, Dussault JH (1980) Free thyroid hormone concentrations during postnatal development in the rat. Pediatr Res 14:247–249

    PubMed  CAS  Google Scholar 

  163. Henning SJ, Leeper LL, Dieu DN (1986) Circulating corticosterone in the infant rat: the mechanism of age and thyroxine effects. Pediatr Res 20:87–92

    PubMed  CAS  Google Scholar 

  164. Baum M, Dwarakanath V, Alpern RJ et al (1998) Effects of thyroid hormone on the neonatal renal cortical Na+/H+ antiporter. Kidney Int 53:1254–1258

    PubMed  CAS  Google Scholar 

  165. Shah M, Quigley R, Baum M (2000) Maturation of proximal straight tubule NaCl transport: role of thyroid hormone. Am J Physiol Renal Physiol 278:F596–F602

    PubMed  CAS  Google Scholar 

  166. Loffing J, Lotscher M, Kaissling B et al (1998) Renal Na/H exchanger NHE-3 and Na-PO4 cotransporter NaPi-2 protein expression in glucocorticoid excess and deficient states. J Am Soc Nephrol 9:1560–1567

    PubMed  CAS  Google Scholar 

  167. Gattineni J, Sas D, Dagan A et al (2008) Effect of thyroid hormone on the postnatal renal expression of NHE8. Am J Physiol Renal Physiol 294:F198–F204

    PubMed  CAS  Google Scholar 

  168. D’Agostino J, Henning SJ (1982) Role of thyroxine in coordinate control of corticosterone and CBG in postnatal development. Am J Physiol 242:E33–E39

    PubMed  Google Scholar 

  169. Meserve LA, Juarez de Ku LM (1993) Effect of thiouracil-induced hypothyroidism on time course of adrenal response in 15 day old rats. Growth Dev Aging 57:25–30

    PubMed  CAS  Google Scholar 

  170. Mitsuma T, Nogimori T (1982) Effects of adrenalectomy on the hypothalamic-pituitary-thyroid axis in rats. Horm Metab Res 14:317–319

    PubMed  CAS  Google Scholar 

  171. Stith RD, Reddy YS (1992) Myocardial contractile protein ATPase activities in adrenalectomized and thyroidectomized rats. Basic Res Cardiol 87:519–526

    PubMed  CAS  Google Scholar 

  172. Zhang J, Bobulescu IA, Goyal S et al (2007) Characterization of Na+/H+ exchanger NHE8 in cultured renal epithelial cells. Am J Physiol Renal Physiol 293:F761–F766

    PubMed  CAS  Google Scholar 

  173. Nakamura N, Tanaka S, Teko Y et al (2005) Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J Biol Chem 280:1561–1572

    PubMed  CAS  Google Scholar 

  174. Liu F, Gesek FA (2001) alpha(1)-Adrenergic receptors activate NHE1 and NHE3 through distinct signaling pathways in epithelial cells. Am J Physiol Renal Physiol 280:F415–F425

    PubMed  CAS  Google Scholar 

  175. Nord EP, Howard MJ, Hafezi A et al (1987) Alpha 2 adrenergic agonists stimulate Na+–H+ antiport activity in the rabbit renal proximal tubule. J Clin Invest 80:1755–1762

    PubMed  CAS  Google Scholar 

  176. Li S, Sato S, Yang X et al (2004) Pyk2 activation is integral to acid stimulation of sodium/hydrogen exchanger 3. J Clin Invest 114:1782–1789

    PubMed  CAS  Google Scholar 

  177. Akiba T, Rocco VK, Warnock DG (1987) Parallel adaptation of the rabbit renal cortical sodium/proton antiporter and sodium/bicarbonate cotransporter in metabolic acidosis and alkalosis. J Clin Invest 80:308–315

    PubMed  CAS  Google Scholar 

  178. Soleimani M, Bookstein C, Singh G et al (1995) Differential regulation of Na+/H+ exchange and H+-ATPase by pH and HCO3 in kidney proximal tubules. J Membr Biol 144:209–216

    PubMed  CAS  Google Scholar 

  179. Ambuhl PM, Amemiya M, Danczkay M et al (1996) Chronic metabolic acidosis increases NHE3 protein abundance in rat kidney. Am J Physiol 271:F917–F925

    PubMed  CAS  Google Scholar 

  180. Di Sole F, Casavola V, Mastroberardino L et al (1999) Adenosine inhibits the transfected Na+–H+ exchanger NHE3 in Xenopus laevis renal epithelial cells (A6/C1). J Physiol 515(Pt 3):829–842

    PubMed  Google Scholar 

  181. Di Sole F, Cerull R, Petzke S et al (2003) Bimodal acute effects of A1 adenosine receptor activation on Na+/H+ exchanger 3 in opossum kidney cells. J Am Soc Nephrol 14:1720–1730

    PubMed  Google Scholar 

  182. Di Sole F, Cerull R, Babich V et al (2004) Acute regulation of Na/H exchanger NHE3 by adenosine A(1) receptors is mediated by calcineurin homologous protein. J Biol Chem 279:2962–2974 Epub 2003 Oct 2921

    PubMed  Google Scholar 

  183. Drumm K, Kress TR, Gassner B et al (2006) Aldosterone stimulates activity and surface expression of NHE3 in human primary proximal tubule epithelial cells (RPTEC). Cell Physiol Biochem 17:21–28

    PubMed  CAS  Google Scholar 

  184. Good DW, George T, Watts BA 3rd (2006) Nongenomic regulation by aldosterone of the epithelial NHE3 Na(+)/H(+) exchanger. Am J Physiol Cell Physiol 290:C757–C763

    PubMed  CAS  Google Scholar 

  185. Watts BA 3rd, George T, Good DW (2006) Aldosterone inhibits apical NHE3 and HCO3 absorption via a nongenomic ERK-dependent pathway in medullary thick ascending limb. Am J Physiol Renal Physiol 291:F1005–F1013

    PubMed  CAS  Google Scholar 

  186. Harris PJ, Young JA (1977) Dose-dependent stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in the rat kidney. Pflugers Arch 367:295–297

    PubMed  CAS  Google Scholar 

  187. Geibel J, Giebisch G, Boron WF (1990) Angiotensin II stimulates both Na(+)–H+ exchange and Na+/HCO3 cotransport in the rabbit proximal tubule. Proc Natl Acad Sci USA 87:7917–7920

    PubMed  CAS  Google Scholar 

  188. Morduchowicz GA, Sheikh-Hamad D, Dwyer BE et al (1991) Angiotensin II directly increases rabbit renal brush-border membrane sodium transport: presence of local signal transduction system. J Membr Biol 122:43–53

    PubMed  CAS  Google Scholar 

  189. Jourdain M, Amiel C, Friedlander G (1992) Modulation of Na–H exchange activity by angiotensin II in opossum kidney cells. Am J Physiol 263:C1141–C1146

    PubMed  CAS  Google Scholar 

  190. Cano A, Miller RT, Alpern RJ et al (1994) Angiotensin II stimulation of Na–H antiporter activity is cAMP independent in OKP cells. Am J Physiol 266:C1603–C1608

    PubMed  CAS  Google Scholar 

  191. Reilly AM, Harris PJ, Williams DA (1995) Biphasic effect of angiotensin II on intracellular sodium concentration in rat proximal tubules. Am J Physiol 269:F374–F380

    PubMed  CAS  Google Scholar 

  192. Houillier P, Chambrey R, Achard JM et al (1996) Signaling pathways in the biphasic effect of angiotensin II on apical Na/H antiport activity in proximal tubule. Kidney Int 50:1496–1505

    PubMed  CAS  Google Scholar 

  193. Poggioli J, Karim Z, Paillard M (1998) Effect of angiotensin ii on Na+/H+ exchangers of the renal tubule. Nephrologie 19:421–425

    PubMed  CAS  Google Scholar 

  194. Chiu HC, Kovacs A, Blanton RM et al (2005) Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ Res 96:225–233

    PubMed  CAS  Google Scholar 

  195. Levine SA, Montrose MH, Tse CM et al (1993) Kinetics and regulation of three cloned mammalian Na+/H+ exchangers stably expressed in a fibroblast cell line. J Biol Chem 268:25527–25535

    PubMed  CAS  Google Scholar 

  196. Winaver J, Burnett JC, Tyce GM et al (1990) ANP inhibits Na(+)–H+ antiport in proximal tubular brush border membrane: role of dopamine. Kidney Int 38:1133–1140

    PubMed  CAS  Google Scholar 

  197. Moe OW, Amemiya M, Yamaji Y (1995) Activation of protein kinase A acutely inhibits and phosphorylates Na/H exchanger NHE-3. J Clin Invest 96:2187–2194

    PubMed  CAS  Google Scholar 

  198. Lamprecht G, Weinman EJ, Yun CH (1998) The role of NHERF and E3KARP in the cAMP-mediated inhibition of NHE3. J Biol Chem 273:29972–29978

    PubMed  CAS  Google Scholar 

  199. Cano A, Preisig P, Alpern RJ (1993) Cyclic adenosine monophosphate acutely inhibits and chronically stimulates Na/H antiporter in OKP cells. J Clin Invest 92:1632–1638

    PubMed  CAS  Google Scholar 

  200. Baum M, Quigley R (1998) Inhibition of proximal convoluted tubule transport by dopamine. Kidney Int 54:1593–1600

    PubMed  CAS  Google Scholar 

  201. Bacic D, Kaissling B, McLeroy P et al (2003) Dopamine acutely decreases apical membrane Na/H exchanger NHE3 protein in mouse renal proximal tubule. Kidney Int 64:2133–2141

    PubMed  CAS  Google Scholar 

  202. Felder CC, Campbell T, Albrecht F et al (1990) Dopamine inhibits Na(+)–H+ exchanger activity in renal BBMV by stimulation of adenylate cyclase. Am J Physiol 259:F297–F303

    PubMed  CAS  Google Scholar 

  203. Hu MC, Quinones H, Moe OW (2000) Chronic inhibition of NHE3 by dopamine (DA) in OKP cells. J Am Soc Nephrol 11(Abstracts Issue):5A

    Google Scholar 

  204. Gomes P, Soares-da-Silva P (2004) Dopamine acutely decreases type 3 Na(+)/H(+) exchanger activity in renal OK cells through the activation of protein kinases A and C signalling cascades. Eur J Pharmacol 488:51–59

    PubMed  CAS  Google Scholar 

  205. Eiam-Ong S, Hilden SA, King AJ et al (1992) Endothelin-1 stimulates the Na+/H+ and Na+/HCO3 transporters in rabbit renal cortex. Kidney Int 42:18–24

    PubMed  CAS  Google Scholar 

  206. Garcia NH, Garvin JL (1994) Endothelin’s biphasic effect on fluid absorption in the proximal straight tubule and its inhibitory cascade. J Clin Invest 93:2572–2577

    PubMed  CAS  Google Scholar 

  207. Walter R, Helmle-Kolb C, Forgo J et al (1995) Stimulation of Na+/H+ exchange activity by endothelin in opossum kidney cells. Pflugers Arch 430:137–144

    PubMed  CAS  Google Scholar 

  208. Chu TS, Peng Y, Cano A et al (1996) Endothelin(B) receptor activates NHE-3 by a Ca2+-dependent pathway in OKP cells. J Clin Invest 97:1454–1462

    PubMed  CAS  Google Scholar 

  209. Laghmani K, Preisig PA, Moe OW et al (2001) Endothelin-1/endothelin-B receptor-mediated increases in NHE3 activity in chronic metabolic acidosis. J Clin Invest 107:1563–1569

    PubMed  CAS  Google Scholar 

  210. Bidet M, Merot J, Tauc M et al (1987) Na+–H+ exchanger in proximal cells isolated from kidney. II. Short-term regulation by glucocorticoids. Am J Physiol 253:F945–F951

    PubMed  CAS  Google Scholar 

  211. Baum M, Quigley R (1993) Glucocorticoids stimulate rabbit proximal convoluted tubule acidification. J Clin Invest 91:110–114

    PubMed  CAS  Google Scholar 

  212. Freiberg JM, Kinsella J, Sacktor B (1982) Glucocorticoids increase the Na+–H+ exchange and decrease the Na+ gradient-dependent phosphate-uptake systems in renal brush border membrane vesicles. Proc Natl Acad Sci USA 79:4932–4936

    PubMed  CAS  Google Scholar 

  213. Kapus A, Grinstein S, Wasan S et al (1994) Functional characterization of three isoforms of the Na+/H+ exchanger stably expressed in Chinese hamster ovary cells. ATP dependence, osmotic sensitivity, and role in cell proliferation. J Biol Chem 269:23544–23552

    PubMed  CAS  Google Scholar 

  214. Nath SK, Hang CY, Levine SA et al (1996) Hyperosmolarity inhibits the Na+/H+ exchanger isoforms NHE2 and NHE3: an effect opposite to that on NHE1. Am J Physiol 270:G431–G441

    PubMed  CAS  Google Scholar 

  215. Ambuhl P, Amemiya M, Preisig PA et al (1998) Chronic hyperosmolality increases NHE3 activity in OKP cells. J Clin Invest 101:170–177

    PubMed  CAS  Google Scholar 

  216. Watts BA 3rd, Good DW (1999) Hyposmolality stimulates apical membrane Na(+)/H(+) exchange and HCO(3)(−) absorption in renal thick ascending limb. J Clin Invest 104:1593–1602

    PubMed  CAS  Google Scholar 

  217. Good DW, Di Mari JF, Watts BA III (2000) Hyposmolality stimulates Na+/H+ exchange and HCO3 absorption in thick ascending limb via PI 3-kinase. Am J Physiol Cell Physiol 279:C1443–C1454

    PubMed  CAS  Google Scholar 

  218. Alexander RT, Malevanets A, Durkan AM et al (2007) Membrane curvature alters the activation kinetics of the epithelial Na+/H+ exchanger, NHE3. J Biol Chem 282:7376–7384

    PubMed  CAS  Google Scholar 

  219. Gesek FA, Schoolwerth AC (1991) Insulin increases Na(+)–H+ exchange activity in proximal tubules from normotensive and hypertensive rats. Am J Physiol 260:F695–F703

    PubMed  CAS  Google Scholar 

  220. Bobulescu IA, Dubree M, Zhang J et al (2008) Effect of renal lipid accumulation on proximal tubule Na+/H+ exchange and ammonium secretion. Am J Physiol Renal Physiol 294:F1315–F1322

    PubMed  CAS  Google Scholar 

  221. Kim JS, Choi KC, Jeong MH et al (2006) Increased expression of sodium transporters in rats chronically inhibited of nitric oxide synthesis. J Korean Med Sci 21:1–4

    Article  PubMed  Google Scholar 

  222. Gill RK, Saksena S, Syed IA et al (2002) Regulation of NHE3 by nitric oxide in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 283:G747–G756

    PubMed  CAS  Google Scholar 

  223. Oweis S, Wu L, Kiela PR et al (2006) Cardiac glycoside downregulates NHE3 activity and expression in LLC-PK1 cells. Am J Physiol Renal Physiol 290:F997–F1008

    PubMed  CAS  Google Scholar 

  224. Puschett JB, Zurbach P, Sylk D (1976) Acute effects of parathyroid hormone on proximal bicarbonate transport in the dog. Kidney Int 9:501–510

    PubMed  CAS  Google Scholar 

  225. Iino Y, Burg MB (1979) Effect of parathyroid hormone on bicarbonate absorption by proximal tubules in vitro. Am J Physiol 236:F387–F391

    PubMed  CAS  Google Scholar 

  226. McKinney TD, Myers P (1980) PTH inhibition of bicarbonate transport by proximal convoluted tubules. Am J Physiol 239:F127–F134

    PubMed  CAS  Google Scholar 

  227. Helmle-Kolb C, Montrose MH, Stange G et al (1990) Regulation of Na+/H+ exchange in opossum kidney cells by parathyroid hormone, cyclic AMP and phorbol esters. Pflugers Arch 415:461–470

    PubMed  CAS  Google Scholar 

  228. Azarani A, Goltzman D, Orlowski J (1995) Parathyroid hormone and parathyroid hormone-related peptide inhibit the apical Na+/H+ exchanger NHE-3 isoform in renal cells (OK) via a dual signaling cascade involving protein kinase A and C. J Biol Chem 270:20004–20010

    PubMed  CAS  Google Scholar 

  229. Kahn AM, Dolson GM, Hise MK et al (1985) Parathyroid hormone and dibutyryl cAMP inhibit Na+/H+ exchange in renal brush border vesicles. Am J Physiol 248:F212–F218

    PubMed  CAS  Google Scholar 

  230. Girardi AC, Titan SM, Malnic G et al (2000) Chronic effect of parathyroid hormone on NHE3 expression in rat renal proximal tubules. Kidney Int 58:1623–1631

    PubMed  CAS  Google Scholar 

  231. Bezerra CN, Girardi AC, Carraro-Lacroix LR et al (2008) Mechanisms underlying the long-term regulation of NHE3 by parathyroid hormone. Am J Physiol Renal Physiol 294:F1232–F1237

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Michel Baum for helpful and insightful discussions. The authors were supported by the National Institutes of Health (R01-DK-48482 and P01-DK-020543 to O.W.M.), the Simmons Family Foundation (O.W.M.), the Charles and Jane Pak Center for Mineral Metabolism and Clinical Research (fellowship grant to I.A.B.), and by the American Society of Nephrology (Carl W. Gottschalk Research Scholar Award to I.A.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orson W. Moe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobulescu, I.A., Moe, O.W. Luminal Na+/H+ exchange in the proximal tubule. Pflugers Arch - Eur J Physiol 458, 5–21 (2009). https://doi.org/10.1007/s00424-008-0595-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0595-1

Keywords

Navigation