Skip to main content

Advertisement

Log in

Micropuncturing the nephron

  • Instruments and Techniques
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

To achieve the role of the kidney in maintaining body homeostasis, the renal vasculature, the glomeruli, and the various segments of the nephron and the collecting duct system have to fulfill very diverse and specific functions. These functions are dependent on a complex renal architecture and are regulated by systemic hemodynamics, hormones, and nerves. As a consequence, to better understand the physiology of the kidney, methods are necessary that allow insights on the function of these diverse structures in the physiological context of the intact kidney. The renal micropuncture technique allows direct access to study superficial nephrons in vivo. In this review, the application of micropuncture techniques on the single nephron level is outlined as an approach to better understand aspects of glomerular filtration, tubular transport, and tubulo-glomerular communication. Studies from the author’s lab, including experiments in gene-targeted mice, are briefly presented to illustrate some of the approaches and show how they can further advance our understanding of the molecular mechanisms involved in the regulation of kidney function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andreucci VE, Herrera-Acosta J, Rector FC Jr, Seldin DW (1971) Measurement of single-nephron glomerular filtration rate by micropuncture: analysis of error. Am J Physiol 221:1551–1559

    PubMed  CAS  Google Scholar 

  2. Ashworth SL, Sandoval RM, Tanner GA, Molitoris BA (2007) Two-photon microscopy: visualization of kidney dynamics. Kidney Int 72:416–421

    Article  PubMed  CAS  Google Scholar 

  3. Bailey MA, Unwin RJ, Shirley DG (2001) In vivo inhibition of renal 11beta-hydroxysteroid dehydrogenase in the rat stimulates collecting duct sodium reabsorption. Clin Sci (Lond) 101:195–198

    Article  CAS  Google Scholar 

  4. Blantz RC (1974) Effect of mannitol on glomerular ultrafiltration in the hydropenic rat. J Clin Invest 54:1135–1143

    Article  PubMed  CAS  Google Scholar 

  5. Blantz RC, Tucker BJ (1978) Measurements of glomerular dynamics. In: Martinez-Maldonado M (ed) Methods in pharmacology. Plenum, New York, pp 141–163

    Google Scholar 

  6. Braam B, Mitchell KD, Fox J, Navar LG (1993) Proximal tubular secretion of angiotensin II in rats. Am J Physiol 264:F891–F898

    PubMed  CAS  Google Scholar 

  7. Brenner BM, Falchuk KH, Keimowitz RI, Berliner RW (1969) The relationship between peritubular capillary protein concentration and fluid reabsorption by the renal proximal tubule. J Clin Invest 48:1519–1531

    Article  PubMed  CAS  Google Scholar 

  8. Brenner BM, Troy JL, Daugharty TM (1971) The dynamics of glomerular ultrafiltration in the rat. J Clin Invest 50:1776–1780

    Article  PubMed  CAS  Google Scholar 

  9. Colindres RE, Kramp RA, Allison ME, Gottschalk CW (1977) Hydrodynamic alterations during distal tubular fluid collections in the rat kidney. Am J Physiol 232:F497–F506

    PubMed  CAS  Google Scholar 

  10. Cortell S (1969) Silicone rubber for renal tubular injection. J Appl Physiol 26:158–159

    PubMed  CAS  Google Scholar 

  11. Davidman M, Lalone RC, Alexander EA, Levinsky NG (1971) Some micropuncture techniques in the rat. Am J Physiol 221:1110–1114

    PubMed  CAS  Google Scholar 

  12. Deen WM, Robertson CR, Brenner BM (1972) A model of glomerular ultrafiltration in the rat. Am J Physiol 223:1178–1183

    PubMed  CAS  Google Scholar 

  13. Deen WM, Troy JL, Robertson CR, Brenner BM (1973) Dynamics of glomerular ultrafiltration in the rat. IV. Determination of the ultrafiltration coefficient. J Clin Invest 52:1500–1508

    Article  PubMed  CAS  Google Scholar 

  14. Falchuk KH, Berliner RW (1971) Hydrostatic pressures in peritubular capillaries and tubules in the rat kidney. Am J Physiol 220:1422–1426

    PubMed  CAS  Google Scholar 

  15. Faria NJ, Dobbie H, Slater JM, Shirley DG, Stocking CJ, Unwin RJ (2005) Simultaneous determination of anions in nanoliter volumes. Kidney Int 67:357–363

    Article  PubMed  CAS  Google Scholar 

  16. Fromter E (1986) The electrophysiological analysis of tubular transport. Kidney Int 30:216–228

    Article  PubMed  CAS  Google Scholar 

  17. Fromter E, Gessner K (2001) Free-flow potential profile along rat kidney proximal tubule. 1974. J Am Soc Nephrol 12:2197–2206

    PubMed  CAS  Google Scholar 

  18. Garcia NH, Plato CF, Garvin JL (1999) Fluorescent determination of chloride in nanoliter samples. Kidney Int 55:321–325

    Article  PubMed  CAS  Google Scholar 

  19. Garvin JL, Burg MB, Knepper MA (1985) Ammonium replaces potassium in supporting sodium transport by the Na–K–ATPase of renal proximal straight tubules. Am J Physiol 249:F785–F788

    PubMed  CAS  Google Scholar 

  20. Giebisch G (1972) Renal micropuncture techniques: a symposium. Yale J Biol Med 45:456

    Google Scholar 

  21. Good DW, Vurek GG (1983) Picomole quantitation of ammonia by flow-through fluorometry. Anal Biochem 130:199–202

    Article  PubMed  CAS  Google Scholar 

  22. Gottschalk CW (1992) A history of renal physiology to 1950. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology. Raven, New York, p. 1–29

    Google Scholar 

  23. Gottschalk CW, Lassiter WE (1973) Micropuncture methodology. In: Orloff J, Berliner RW (eds) Handbook of physiology. Sect. 8: Renal physiology. American Physiological Society, Washington, p. 129–143

    Google Scholar 

  24. Gottschalk CW, Mylle M (1959) Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am J Physiol 196:927–936

    PubMed  CAS  Google Scholar 

  25. Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Merillat AM, Waarsing JH, Rossier BC, Vallon V, Hummler E, Bindels RJ (2003) Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest 112:1906–1914

    PubMed  CAS  Google Scholar 

  26. Holstein-Rathlou NH (1991) A closed-loop analysis of the tubuloglomerular feedback mechanism. Am J Physiol 261:F880–F889

    PubMed  CAS  Google Scholar 

  27. Huang DY, Osswald H, Vallon V (1998) Intratubular application of sodium azide inhibits loop of Henle reabsorption and tubuloglomerular feedback response in anesthetized rats. Naunyn Schmiedebergs Arch Pharmacol 358:367–373

    Article  PubMed  CAS  Google Scholar 

  28. Huang DY, Osswald H, Vallon V (1999) Eukaliuric diuresis and natriuresis in response to the KATP channel blocker U37883A: micropuncture studies on the tubular site of action. Br J Pharmacol 127:1811–1818

    Article  PubMed  CAS  Google Scholar 

  29. Huang DY, Osswald H, Vallon V (2000) Sodium reabsorption in thick ascending limb of Henle’s loop: effect of potassium channel blockade in vivo. Br J Pharmacol 130:1255–1262

    Article  PubMed  CAS  Google Scholar 

  30. Ichikawa I, Brenner BM (1979) Local intrarenal vasoconstrictor-vasodilator interactions in mild partial ureteral obstruction. Am J Physiol 236:F131–F140

    PubMed  CAS  Google Scholar 

  31. Jamison RL (1970) Micropuncture study of superficial and juxtamedullary nephrons in the rat. Am J Physiol 218:46–55

    PubMed  CAS  Google Scholar 

  32. Kibble JD, Audsley N, Day JP, Green R (1998) A new protocol for the measurement of picomole quantities of magnesium in rat renal tubular fluid. Exp Physiol 83:11–22

    PubMed  CAS  Google Scholar 

  33. Lameire NH, Lifschitz MD, Stein JH (1977) Heterogeneity of nephron function. Annu Rev Physiol 39:159–184

    Article  PubMed  CAS  Google Scholar 

  34. Leyssac PP, Baumbach L (1983) An oscillating intratubular pressure response to alterations in Henle loop flow in the rat kidney. Acta Physiol Scand 117:415–419

    Article  PubMed  CAS  Google Scholar 

  35. Loffing J, Vallon V, Loffing-Cueni D, Aregger F, Richter K, Pietri L, Bloch-Faure M, Hoenderop JG, Shull GE, Meneton P, Kaissling B (2004) Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman’s syndrome. J Am Soc Nephrol 15:2276–2288

    Article  PubMed  CAS  Google Scholar 

  36. Lorenz JN (2001) Considerations for the evaluation of renal function in genetically engineered mice. Curr Opin Nephrol Hypertens 10:65–69

    Article  PubMed  CAS  Google Scholar 

  37. Lorenz JN, Gruenstein E (1999) A simple, nonradioactive method for evaluating single-nephron filtration rate using FITC-inulin. Am J Physiol 276:F172–F177

    PubMed  CAS  Google Scholar 

  38. Ludwig C (1842) De viribus physicis secretionem urinae adjuvantibus. Thesis, Marburg

  39. Ludwig CFW (1843) Beitraege zur Lehre vom Mechanismus der Harnsekretion. N.G. Elwert, Marburg

    Google Scholar 

  40. Malnic G (1998) Combined in vivo and in vitro approaches to analysis of renal tubule function. Exp Nephrol 6:454–461

    Article  PubMed  CAS  Google Scholar 

  41. Malnic G, Vieira FL (1972) The antimony microelectrode in kidney micropuncture. Yale J Biol Med 45:356–367

    PubMed  CAS  Google Scholar 

  42. Meneton P, Ichikawa I, Inagami T, Schnermann J (2000) Renal physiology of the mouse. Am J Physiol Renal Physiol 278:F339–F351

    PubMed  CAS  Google Scholar 

  43. Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ (2005) Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 115:1651–1658

    Article  PubMed  CAS  Google Scholar 

  44. Ramsay MA, Brown RHJ (1955) Simplified apparatus and procedure for freezing point determinations upon small volumes of fluid. J Scient Instruments 32:372

    Article  CAS  Google Scholar 

  45. Ramsey J, Brown R, Croghan P (1955) Electrometric titration of chloride in small volume. J Exp Biol 32:822–829

    Google Scholar 

  46. Richards AN, Walker AM (1936) Methods of collecting fluid from known regions of the renal tubules of Amphibia and of perfusing the lumen of a single tubule. Am J Physiol 118:111–120

    Google Scholar 

  47. Schnermann J, Wright FS, Davis JM, von Stackelberg W, Grill G (1970) Regulation of superficial nephron filtration rate by tubulo-glomerular feedback. Pflugers Arch 318:147–175

    Article  PubMed  CAS  Google Scholar 

  48. Shalmi M, Kibble JD, Day JP, Christensen P, Atherton JC (1994) Improved analysis of picomole quantities of lithium, sodium, and potassium in biological fluids. Am J Physiol 267:F695–F701

    PubMed  CAS  Google Scholar 

  49. Sipos A, Toma I, Kang JJ, Rosivall L, Peti-Peterdi J (2007) Advances in renal (patho)physiology using multiphoton microscopy. Kidney Int 72:1188–1191

    Article  PubMed  CAS  Google Scholar 

  50. Star RA (1990) Quantitation of total carbon dioxide in nanoliter samples by flow-through fluorometry. Am J Physiol 258:F429–F432

    PubMed  CAS  Google Scholar 

  51. Star RA, Burg MB, Knepper MA (1985) Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts. Role of chloride/bicarbonate exchange. J Clin Invest 76:1123–1130

    Article  PubMed  CAS  Google Scholar 

  52. Stocking CJ, Slater JM, Unwin R, Walter S, Folkerd E (1999) An automated technique for the simultaneous determination of cations in nanoliter volumes. Kidney Int 56:338–343

    Article  PubMed  CAS  Google Scholar 

  53. Terada Y, Knepper MA (1989) Continuous-flow quantitation of Na+ and K+ in nanoliter samples using chromogenic macrocyclic ionophores. Am J Physiol 257:F893–F898

    PubMed  CAS  Google Scholar 

  54. Thomson S, Bao D, Deng A, Vallon V (2000) Adenosine formed by 5′-nucleotidase mediates tubuloglomerular feedback. J Clin Invest 106:289–298

    Article  PubMed  CAS  Google Scholar 

  55. Thomson S, Vallon V, Blantz RC (1996) Asymmetry of tubuloglomerular feedback effector mechanism with respect to ambient tubular flow. Am J Physiol 271:F1123–F1130

    PubMed  CAS  Google Scholar 

  56. Thomson SC, Blantz RC (2008) Biophysical basis of glomerular filtration. In: Alpern RJ, Hebert SC (eds) Seldin and Giebisch’s the kidney. Academic Press, p. 565–587

  57. Thomson SC, Deng A, Bao D, Satriano J, Blantz RC, Vallon V (2001) Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. J Clin Invest 107:217–224

    Article  PubMed  CAS  Google Scholar 

  58. Thomson SC, Deng A, Wead L, Richter K, Blantz RC, Vallon V (2006) An unexpected role for angiotensin II in the link between dietary salt and proximal reabsorption. J Clin Invest 116:1110–1116

    Article  PubMed  CAS  Google Scholar 

  59. Thomson SC, Tucker BJ, Gabbai F, Blantz RC (1989) Functional effects on glomerular hemodynamics of short-term chronic cyclosporine in male rats. J Clin Invest 83:960–969

    Article  PubMed  CAS  Google Scholar 

  60. Thurau K, Schnermann J (1998) The Na concentration of the macula densa cells as a factor regulating glomerular filtration rate (micropuncture studies). 1965. J Am Soc Nephrol 9:925–934

    PubMed  CAS  Google Scholar 

  61. Vallon V (2003) In vivo studies of the genetically modified mouse kidney. Nephron Physiol 94:1–5

    Article  Google Scholar 

  62. Vallon V (2003) Tubuloglomerular feedback in the kidney: insights from gene-targeted mice. Pflugers Arch 445:470–476

    PubMed  CAS  Google Scholar 

  63. Vallon V (2008) P2 receptors in the regulation of renal transport mechanisms. Am J Physiol Renal Physiol 294:F10–F27

    Article  PubMed  CAS  Google Scholar 

  64. Vallon V, Blantz RC, Thomson S (1995) Homeostatic efficiency of tubuloglomerular feedback is reduced in established diabetes mellitus in rats. Am J Physiol 269:F876–F883

    PubMed  CAS  Google Scholar 

  65. Vallon V, Grahammer F, Richter K, Bleich M, Lang F, Barhanin J, Volkl H, Warth R (2001) Role of KCNE1-dependent K+ fluxes in mouse proximal tubule. J Am Soc Nephrol 12:2003–2011

    PubMed  CAS  Google Scholar 

  66. Vallon V, Grahammer F, Volkl H, Sandu CD, Richter K, Rexhepaj R, Gerlach U, Rong Q, Pfeifer K, Lang F (2005) KCNQ1-dependent transport in renal and gastrointestinal epithelia. Proc Natl Acad Sci U S A 102:17864–17869

    Article  PubMed  CAS  Google Scholar 

  67. Vallon V, Osswald H, Blantz RC, Thomson S (1997) Potential role of luminal potassium in tubuloglomerular feedback. J Am Soc Nephrol 8:1831–1837

    PubMed  CAS  Google Scholar 

  68. Vallon V, Richter K, Blantz RC, Thomson S, Osswald H (1999) Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol 10:2569–2576

    PubMed  CAS  Google Scholar 

  69. Vallon V, Richter K, Heyne N, Osswald H (1997) Effect of intratubular application of angiotensin 1–7 on nephron function. Kidney Blood Press Res 20:233–239

    Article  PubMed  CAS  Google Scholar 

  70. Vallon V, Richter K, Huang DY, Rieg T, Schnermann J (2004) Functional consequences at the single-nephron level of the lack of adenosine A1 receptors and tubuloglomerular feedback in mice. Pflugers Arch 448:214–221

    Article  PubMed  CAS  Google Scholar 

  71. Vallon V, Schnermann J (2003) Tubuloglomerular feedback. Methods Mol Med 86:429–441

    PubMed  Google Scholar 

  72. Vallon V, Schwark JR, Richter K, Hropot M (2000) Role of Na(+)/H(+) exchanger NHE3 in nephron function: micropuncture studies with S3226, an inhibitor of NHE3. Am J Physiol Renal Physiol 278:F375–F379

    PubMed  CAS  Google Scholar 

  73. Vallon V, Verkman AS, Schnermann J (2000) Luminal hypotonicity in proximal tubules of aquaporin-1-knockout mice. Am J Physiol Renal Physiol 278:F1030–F1033

    PubMed  CAS  Google Scholar 

  74. Vekaria RM, Unwin RJ, Shirley DG (2006) Intraluminal ATP concentrations in rat renal tubules. J Am Soc Nephrol 17:1841–1847

    Article  PubMed  CAS  Google Scholar 

  75. Vurek GG (1981) Calcium measurement: picomole quantitation by continuous-flow colorimetry. Anal Biochem 114:288–293

    Article  PubMed  CAS  Google Scholar 

  76. Vurek GG (1981) Flow-through nanocolorimeter for measurement of picomole amounts of magnesium and phosphate. Anal Lett 14:261–269

    CAS  Google Scholar 

  77. Vurek GG, Knepper MA (1982) A colorimeter for measurement of picomole quantities of urea. Kidney Int 21:656–658

    Article  PubMed  CAS  Google Scholar 

  78. Vurek GG, Warnock DG, Corsey R (1975) Measurement of picomole amounts of carbon dioxide by calorimetry. Anal Chem 47:765–767

    Article  PubMed  CAS  Google Scholar 

  79. Walker AM, Bott PA, Oliver J, MacDowel MC (1941) The collection and analysis of fluid from single nephrons of the mammalian kidney. Am J Physiol 134:580–595

    CAS  Google Scholar 

  80. Walker AM, Hudson CL (1936) The reabsorption of glucose from the renal tubule in Amphibia and the action of phlorhizin upon it. Am J Physiol 118:130–143

    Google Scholar 

  81. Walker AM, Oliver J (1941) Methods for the collection of fluid from single glomeruli and tubules of the mammalian kidney. Am J Physiol 134:562–579

    CAS  Google Scholar 

  82. Wang T, Yang CL, Abbiati T, Schultheis PJ, Shull GE, Giebisch G, Aronson PS (1999) Mechanism of proximal tubule bicarbonate absorption in NHE3 null mice. Am J Physiol 277:F298–F302

    PubMed  CAS  Google Scholar 

  83. Wearn JT, Richards AN (1924) Observations on the composition of glomerular urine, with particular reference to the problem of reabsorption in the renal tubules. Am J Physiol 71:209–227

    CAS  Google Scholar 

  84. Windhager EE (1968) Micropuncture techniques and nephron function. Butterworths, London

    Google Scholar 

  85. Windhager EE (1987) Micropuncture and microperfusion. In: Gottschalk CW, Berliner RW, Giebisch GH (eds) Renal physiology. People and ideas. American Physiological Society, Bethesda, p. 101–129

    Google Scholar 

  86. Wirz H (1953) Der osmotische Druck des Blutes in der Nierenpapille. Helv Physiol Pharmacol Acta 11:20–29

    PubMed  CAS  Google Scholar 

  87. Wirz H (1956) Der osmotische Druck in den corticalen Tubuli der Rattenniere. Helv Physiol Pharmacol Acta 14:353–362

    PubMed  CAS  Google Scholar 

  88. Wirz H, Hargitay B, Kuhn W (1951) Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie. Helv Physiol Pharmacol Acta 9:196–207

    PubMed  CAS  Google Scholar 

  89. Woda C, Mulroney SE, Halaihel N, Sun L, Wilson PV, Levi M, Haramati A (2001) Renal tubular sites of increased phosphate transport and NaPi-2 expression in the juvenile rat. Am J Physiol Regul Integr Comp Physiol 280:R1524–R1533

    PubMed  CAS  Google Scholar 

  90. Wright FS, Giebisch G (1972) Glomerular filtration in single nephrons. Kidney Int 1:201–209

    Article  PubMed  CAS  Google Scholar 

  91. Zhelyaskov VR, Liu S, Broderick MP (2000) Analysis of nanoliter samples of electrolytes using a flow-through microfluorometer. Kidney Int 57:1764–1769

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The author was supported by the Deutsche Forschungsgemeinschaft, the Department of Veterans Affairs, the American Heart Association (0655232Y), and the National Institutes of Health (DK56248, DK28602, GM66232, DK070667, DK079784).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Vallon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallon, V. Micropuncturing the nephron. Pflugers Arch - Eur J Physiol 458, 189–201 (2009). https://doi.org/10.1007/s00424-008-0581-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0581-7

Keywords

Navigation