Skip to main content

Advertisement

Log in

Regulation of phosphate transport in proximal tubules

  • Transport Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Homeostasis of inorganic phosphate (Pi) is primarily an affair of the kidneys. Reabsorption of the bulk of filtered Pi occurs along the renal proximal tubule and is initiated by apically localized Na+-dependent Pi cotransporters. Tubular Pi reabsorption and therefore renal excretion of Pi is controlled by a number of hormones, including phosphatonins, and metabolic factors. In most cases, regulation of Pi reabsorption is achieved by changing the apical abundance of Na+/Pi cotransporters. The regulatory mechanisms involve various signaling pathways and a number of proteins that interact with Na+/Pi cotransporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abraham MI, Woods RE, Breedlove DK, Kempson SA (1992) Renal adaptation to low phosphate diet in diabetic rats. Am J Physiol 262:F731–F736

    PubMed  CAS  Google Scholar 

  2. Bacic D, Capuano P, Baum M, Zhang J, Stange G, Biber J, Kaissling B, Moe OW, Wagner CA, Murer H (2005) Activation of dopamine D1-like receptors induces acute internalization of the renal Na/phosphate cotransporter NaPi-lla in mouse kidney and OK cells. Am J Physiol 288:F740–F747

    CAS  Google Scholar 

  3. Bacic D, Hernando N, Traebert M, Lederer E, Völkl H, Biber J, Kaissling B, Murer H (2001) Regulation of the renal type lla Na/Pi cotransporter by cGMP. Pflügers Arch 443:306–313

    PubMed  CAS  Google Scholar 

  4. Bacic D, LeHir M, Biber J, Kaissling B, Murer H, Wagner CA (2006) The renal Na/phosphate cotransporter NaPi-lla is internalized via the receptor mediated endocytic route in response to parathyroid hormone. Kidney Int 69:495–503

    PubMed  CAS  Google Scholar 

  5. Bacic D, Schulz N, Biber J, Kaislling B, Murer H, Wagner CA (2003) Involvement of the MAPK-kinase pathway in the PTH-mediated regulation of the proximal tubule type lla Na/Pi cotransporter in mouse kidney. Pflügers Arch 446:52–60

    PubMed  CAS  Google Scholar 

  6. Baum M, Schiavi S, Dwarakanath V, Quigley R (2005) Effect of fibroblast growth factor-23 on phosphate transport in proximal tubules. Kidney Int 68:1148–1153

    PubMed  CAS  Google Scholar 

  7. Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS (1998) Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalcuria, and skeletal abnormalities. Proc Natl Acad Sci (USA) 95:5372–5377

    CAS  Google Scholar 

  8. Beers KW, Thompson MA, Chini EN, Dousa TP (1996) beta-Estradiol inhibits Na-Pi cotransport across renal brush border membranes from ovarectomized rats. Biochem Biophys Res Commun 221:442–445

    PubMed  CAS  Google Scholar 

  9. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (2005) SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalcuria predict a key role for the sodium-phosphate cotransporter NaPi-llc in maintaining phosphate homeostasis. Am J Hum Genet 78:179–192

    PubMed  Google Scholar 

  10. Berndt TJ, Bielesz B, Craig TA, Tebben PJ, Bacic D, Wagner CA, O’Brien S, Schiavi S, Biber J, Murer H, Kumar R (2006) Secreted frizzled-related protein 4 reduces sodium-phopshate cotransporter abundance and acvtivity in proximal tubule cells. Pflügers Arch 451:579–587

    PubMed  CAS  Google Scholar 

  11. Berndt TJ, Knox FG (1992) Renal regulation of phosphate excretion. In: Seldin DW, Giebisch GH (eds) The Kidney, 2nd edn. Williams & Wilkins, Philadelphia, Lippincott, pp 2511–2532

    Google Scholar 

  12. Berndt T, Kumar R (2007) Phosphatonins and the regulation of phosphate homeostasis. Annu Rev Physiol 69:341–359

    PubMed  CAS  Google Scholar 

  13. Berndt T, Thomas LF, Craig TA, Sommer S, Li X, Bergstrahl EJ, Kumar R (2007) Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sci (USA) 104:11085–11090

    CAS  Google Scholar 

  14. Bevington A, Kemp GJ, Graham R, Russell G (1992) Phosphate-sensitive enzymes: A possible molecular basis for cellular disorders of phosphate metabolism. Clin Chem Enzym Comms 4:235–257

    Google Scholar 

  15. Biber J, Gisler S, Hernando N, Murer H (2005) Protein/protein interactions (PDZ) in proximal tubules. J Membrane Biol 203:111–118

    CAS  Google Scholar 

  16. Bielesz B, Bacic D, Honegger K, Biber J, Murer H, Wagner CA (2006) Unchanged expression of the sodium-dependent phosphate cotransporter NaPi-lla despite diurnal changes in renal phosphate excretion. Pflügers Arch 452:683–689

    PubMed  CAS  Google Scholar 

  17. Bielesz B, Klaushofer K, Oberbauer R (2004) Renal phosphate loss in hereditary and acquired disorders of bone mineralization. Bone 35:1229–1239

    PubMed  CAS  Google Scholar 

  18. Bottger P, Hede SE, Grunnet M, Hoyer B, Klaerke DA, Pederson L (2006) Characterization of transport mechanisms and determinants critical for Na-dependent Pi symport of the Pit-family paralogs, human Pit1 and Pit2. Am J Physiol 291:C1377–C1387

    Google Scholar 

  19. Brautbar N, Walling MW, Coburn JW (1979) Interactions between vitamin D deficiency and phosphorous depletion in the rat. J Clin Invest 63:335–341

    PubMed  CAS  Google Scholar 

  20. Brown A, Dusso A, Slatopolsky E (2000) Vitamin D. In: Seldin DW, Giebisch GH (eds) The Kidney, 3rd edn. Williams & Wilkins, Philadelphia, Lippincott, pp 1047–1090

    Google Scholar 

  21. Busch AE, Schuster A, Waldegger S, Wagner CA, Zempel G, Broer S, Biber J, Murer H, Lang F (1996) Expression of a renal type l sodium/phosphate transporter (NaPi-1) induces a conductance in Xenopus oocytes permeable for organic and inorganic anions. Proc Natl Acad Sci (USA) 83:5347–5351

    Google Scholar 

  22. Capuano P, Bacic D, Roos M, Gisler SM, Stange G, Biber J, Kaissling B, Weinman EJ, Shenolikar S, Wagner CA, Murer H (2007) Defective coupling of apical PTH receptors to phospholipase C prevents internalization of the Na-phosphate cotransporter NaPi-lla in NHERF1 deficient mice. Am J Physiol 292:C927–C934

    CAS  Google Scholar 

  23. Capuano P, Bacic D, Stange G, Hernando N, Kaissling B, Pal R, Kocher O, Biber J, Wagner CA, Murer H (2005) Expression and regulation of the renal Na/phosphate cotransporter NaPi-lla in a mouse model deficient for the PDZ protein PDZK1. Pflügers Arch 499:392–402

    Article  CAS  Google Scholar 

  24. Capuano P, Radanovic T, Wagner CA, Bacic D, Kato S, Uchiyama Y, St-Arnoud R, Murer H, Biber J (2005) Intestinal and renal adaptation to a low Pi diet of type Na-Pi cotransporters in vitamin D receptor and 1a-OHase deficient mice. Am J Physiol 288:C429–C434

    CAS  Google Scholar 

  25. Carpenter T, Ellis BK, Insogna KL, Philbrick WM, Sterpka J, Shimkets R (2005) Firbroblast growth factor 7: An inhibitor of phosphate transport derived from oncogenic osteomalacia-causing tumors. J Clin Endocrinol Metab 90:1012–1020

    PubMed  CAS  Google Scholar 

  26. Caverzasio J, Bonhour JP (1985) Mechanism of rapid phosphate transport adaptation to a single low Pi meal in rat renal brush border membranes. Pflügers Arch 404:227–231

    PubMed  CAS  Google Scholar 

  27. Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG (2005) The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310:490–493

    PubMed  CAS  Google Scholar 

  28. Christensen EI, Nielsen R (2007) Role of megalin and cubulin in renal physiology and pathophysiology. Rev Physiol Biochem Pharmacol 158:1–22

    PubMed  CAS  Google Scholar 

  29. Collins JF, Ghishan FK (2004) The SLC20 family of proteins: dual functions as sodium-phosphate cotransporters and viral receptors. Pflügers Arch 447:647–652

    PubMed  CAS  Google Scholar 

  30. Consortium TA (2000) Autosomal dominant hypophosphatemic rickets is associated with mutations in FGF23. Nat Genet 26:345–348

    Google Scholar 

  31. Cunningham R, Esmaili A, Brown E, Biswas RS, Murtazina R, Donowitz M, Dijkman HB, van der Vlag J, Hogema BM, De Jonge HR, Shenolikar S, Wade JB, Weinman EJ (2008) Urine electrolyte, mineral, and protein excretion in NHERF-2 and NHERF-1 null mice. Am J Physiol 294:F1001–F1007

    CAS  Google Scholar 

  32. Custer M, Lötscher M, Biber J, Murer H, Kaissling B (1994) Expression of Na/Pi cotransport in rat kidney: Localization by RT-PCR and immunohistochemistry. Am J Physiol 266:F767–F774

    PubMed  CAS  Google Scholar 

  33. Custer M, Meier F, Schlatter E, Greer R, Garcia-Perez A, Biber J, Murer H (1993) Localization of NaPi-1, a NaPi-cotransporter in rabbit kidney proximal tubules. Pflügers Arch 424:203–209

    PubMed  CAS  Google Scholar 

  34. Deliot N, Hernando N, Liu-Horst Z, Gisler SM, Capuano P, Wagner CA, Bacic D, O’Brien S, Biber J, Murer H (2005) Parathyroid hormone treatment induces dissociation of type lla Na-Pi cotransporter/ Na/H exchanger regulatory factor-1 complexes. Am J Physiol 289:C159–C167

    CAS  Google Scholar 

  35. Dobbie H, Unwin RJ, Faria NJR, Shirley DG (2008) Matrix extracellular phosphoglycoprotein causes phosphaturia in rats by inhibiting tubular phosphate reabsorption. Nephrol Dial Transplant 23:730–733

    PubMed  CAS  Google Scholar 

  36. Dousa TP, Kempson SA (1982) Regulation of renal brush border membrane transport of phosphate. Miner Electrolyte Metab 7:113–121

    PubMed  CAS  Google Scholar 

  37. Faroqui S, Levi M, Soleimani M, Amlal H (2008) Estrogen downregulates the expression of proximal tubule NaPi-lla and causes phosphate wasting and hypophosphatemia. Kidney Int 73:1141–1150

    PubMed  CAS  Google Scholar 

  38. Forster IC, Köhler K, Biber J, Murer H (2002) Forging the link between structure and function of electrogenic cotransporters: the renal type lla Na/Pi cotransporter as a case study. Prog Biophys Mol Biol 80:69–108

    PubMed  CAS  Google Scholar 

  39. Friedlander G (1998) Autocrine/paracrine control of renal phosphate transport. Kidney Int Suppl 65:S18–S23

    PubMed  CAS  Google Scholar 

  40. Friedlaender MM, Wald H, Dranitzky-Elhalel M, Levi M, Popovtzer MM (2004) Recovery of renal tubule phosphate reabsorption despite reduced levels of sodium-phosphate transporter. Europ J Endocrin 151:797–801

    CAS  Google Scholar 

  41. Gensure RC, Gardella TJ, Jüppner H (2005) Parathyroid hormone and parathyroid hormone related peptide, and their receptors. Biochim Biophys Acta 328:666–678

    CAS  Google Scholar 

  42. Gisler SM, Kittanakom S, Fuster D, Wong V, Bertic M, Radanovic T, Hall RA, Murer H, Biber J, Markovich D, Moe OW, Stagliar I (2008) Monitoring protein–protein interactions between the mammalian renal epithelial integral membrane proteins and their PDZ interacting partners using the type II split ubiquitin membrane yeast two-hybrid system. Molec Cell Proteomics71362–1377

    CAS  Google Scholar 

  43. Gisler SM, Pribanic S, Bacic D, Forrer P, Sabourin LA, Tsuji A, Zhao Z, Manser E, Biber J, Murer H (2003) PDZK1: A major scaffolder in brush borders of proximal tubular cells. Kidney Int 64:1733–1745

    PubMed  CAS  Google Scholar 

  44. Gisler SM, Stagliar I, Traebert M, Bacic D, Biber J, Murer H (2001) Interaction of the type lla Na/Pi-cotransporter with PDZ proteins. J Biol Chem 276:9206–9213

    PubMed  CAS  Google Scholar 

  45. Gmaj P, Murer H (1986) Cellular mechanisms of inorganic phosphate transport in kidney. Physiol Rev 66:36–70

    PubMed  CAS  Google Scholar 

  46. Guntupalli J, Eby B, Lau K (1982) Mechanism for the phosphaturia of NH4Cl: dependence on acidemia but not on diet PO4 or PTH. Am J Physiol 242:F552–F560

    PubMed  CAS  Google Scholar 

  47. Haggie PM, Stanton BA, Verkman AS (2003) Increased diffusional mobility of CFTR at the plasma membrane after deletion of its C-terminus PDZ binding motif. J Biol Chem 279:5494–5500

    PubMed  Google Scholar 

  48. Hammond TG, Yusufi AN, Knox FG, Dousa TP (1985) Administration of atrial natriuretic factor inhibits sodium-coupled transport in proximal tubules. J Clin Invest 75:1983–1989

    PubMed  CAS  Google Scholar 

  49. Hernando N, Deliot N, Gisler SM, Lederer E, Weinman EJ, Biber J, Murer H (2002) PDZ domain interactions and apical expression of type lla Na/Pi-cotransporters. Proc Natl Acad Sci (USA) 99:11957–11692

    CAS  Google Scholar 

  50. Hernando N, Forgo J, Biber J, Murer H (2000) PTH-induced downregulation of the type lla Na/Pi-cotransporter is independent of known endocytic motifs. J Am Soc Nephrol 11:1961–1968

    PubMed  CAS  Google Scholar 

  51. Hruska KA, Methew S, Lund R, Qui P, Pratt R (2008) Hyperphosphatemia of chronic diseases. Kidney Int 74:148–157

    PubMed  CAS  Google Scholar 

  52. Hu MC, Zhang J, Shi M, Rosenblatt K, Baum M, Kuro OM, Moe OW (2006) Klotho is a phosphaturic hormone: in vivo evidence. J Am Soc Nephrol 17:105a

    Google Scholar 

  53. Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N, Fujimori T, Nabeshima Y (2004) Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett 565:143–147

    PubMed  CAS  Google Scholar 

  54. Ito M, Iidawa S, Izuka M, Haito S, Segawa H, Kuwahata M, Ohkido I, Ohno H, Miyamoto KI (2004) Interaction of a farnesylated protein with renal type lla Na/Pi cotransporter in response to parathyroid hormone and dietary phosphate. Biochem J 377:607–616

    PubMed  CAS  Google Scholar 

  55. Jüppner H (2007) Novel regulators of phosphate homeostasis and bone metabolism. Therap Apher Dial 11:S3–S22

    Google Scholar 

  56. Karim-Jimenez Z, Hernando N, Biber J, Murer H (2000) A dibasic motif involved in parathyroid hormone-induced down-regulation of the type lla NaPi cotransporter. Proc Natl Acad Sci (USA) 97:12896–12901

    CAS  Google Scholar 

  57. Kemp GJ, Blumsohn A, Morris BW (1992) Circadian changes in plasma phosphate concentration, urinary phosphate excretion, and cellular phosphate shifts. Clin Chem 38:400–402

    PubMed  CAS  Google Scholar 

  58. Kempson SA, Lötscher M, Kaissling B, Biber J, Murer H, Levi M (1995) Parathyroid hormone action on phosphate transporter mRNA and protein in rat renal proximal tubules. Am J Physiol 268:F784–F791

    PubMed  CAS  Google Scholar 

  59. Keusch I, Traebert M, Lötscher M, Kaislling B, Murer H, Biber J (1998) Parathyroid hormone and dietary phosphate provoke lysosomal routing of the proximal tubular Na/Pi-cotransporter type ll. Kidney Int 54:1224–1232

    PubMed  CAS  Google Scholar 

  60. Kido S, Miyamoto K, Mizobuchi H, Taketani Y, Ohkido I, Ogawa N, Kaneko Y, Harashima S, Takeda E (1999) Identification of regulatory sequences and binding proteins in the type ll sodium/phosphate cotransporter NPT2 gene responsive to dietary phosphate. J Biol Chem 274:28256–28263

    PubMed  CAS  Google Scholar 

  61. Kittler JT, Rostaing P, Schiavo G, Fritschy JM, Olsen R, Triller A, Moss SJ (2001) The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors. Mol Cell Neurosci 18:13–25

    PubMed  CAS  Google Scholar 

  62. Knochel JP (2000) Clinical and physiologic phosphate disturbances. In: Seldin DW, Giebisch GH (eds) The Kidney, 3rd edn. Williams & Wilkins, Philadelphia, Lippincott, pp 1905–1934

    Google Scholar 

  63. Köhler K, Forster IC, Lambert G, Biber J, Murer H (2000) The functional unit of the renal type IIa Na+/Pi cotransporter is a monomer. J Biol Chem 275:26113–26120

    PubMed  Google Scholar 

  64. Kreusser WJ, Descoeudres C, Oda Y, Massry SG, Kurokawa K (1980) Effect of phosphate depletion on renal gluconeogenesis. Miner Electrolyte Metab 3:312–323

    CAS  Google Scholar 

  65. Kuro OM (2006) Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens 15:437–441

    Google Scholar 

  66. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu M-C, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123

    PubMed  CAS  Google Scholar 

  67. Lederer ED, Sohi SS, McLeish KR (2000) Parathyroid hormone stimulates extracellular signal-regulated kinase (ERK) activity through two independent signal transduction pathways: role of ERK in sodium-phosphate cotransport. J Am Soc Nephrol 11:222–231

    PubMed  CAS  Google Scholar 

  68. Lee SH, Mouradian MM (1999) Up regulation of D1A dopamine receptor gene transcription by estrogen. Mol Cell Endocrinol 156:151–157

    PubMed  Google Scholar 

  69. Levi M, Baird BM, Wilson PV (1990) Cholesterol modulates rat renal brush border membrane phosphate transport. J Clin Invest 85:231–237

    PubMed  CAS  Google Scholar 

  70. Levi M, Blaine J, Breusegem S, Takahashi H, Sorribas V, Barry N (2006) Renal phosphate-wasting disorders. Adv Chron Kidney Dis 13:155–165

    Google Scholar 

  71. Levi M, Kempson SA, Lötscher M, Biber J, Murer H (1996) Molecular regulation of renal phosphate transport. J Membrane Biol 154:1–9

    CAS  Google Scholar 

  72. Levi M, Shayman JA, Abe A, Gross SK, McCluer RH, Biber J, Murer H, Lötscher M, Cronin RE (1995) Dexamethasone modulates rat renal brush border membrane phosphate transporter mRNA and protein abundance and glycoshingolipid composition. J Clin Invest 96:207–216

    PubMed  CAS  Google Scholar 

  73. Levine BS, Ho LD, Pasiecznik K, Coburn JW (1986) Renal adaptation to phosphorous deprivation: characterization of early events. J Bone Miner Res 1:33–40

    PubMed  CAS  Google Scholar 

  74. Liu S, Quarles LD (2007) How fibroblast growth factor 23 works. J Am Soc Nephrol 18:1637–1647

    PubMed  CAS  Google Scholar 

  75. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosamo D, Gershoni-Baruch R, Albers N, Lichtner P, Schnabel D, Hochberg Z, Strom TM (2006) Hereditary hypophosphatemic rickets with hypercalcuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet 78:193–201

    PubMed  CAS  Google Scholar 

  76. Madjdpour C, Bacic D, Kaissling B, Murer H, Biber J (2004) Segment specific expression of sodium-phosphate cotransporters NaPi lla and –llc and interacting proteins in mouse renal proximal tubules. Pflügers Arch 448:402–410

    PubMed  CAS  Google Scholar 

  77. Mahon MJ, Cole JA, Lederer ED, Segre GV (2003) Na/H exchanger regulatory factor 1 mediates inhibition of phosphate transport by parathyroid hormone and second messengers by acting at multiple sites in opossum kidney cells. Mol Endocrinol 17:2355–2364

    PubMed  CAS  Google Scholar 

  78. McWilliams RR, Breusegem SY, Brodsky KF, Kim E, Levi M, Doctor RB (2005) Shank2E binds NaPi cotransporter at the apical membrane of proximal tubule cells. Am J Physiol 289:C1042–C1051

    CAS  Google Scholar 

  79. Miyamoto K, Ito M, Tatsumi S, Kuwahata M, Segawa H (2007) New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am J Nephrol 27:503–515

    PubMed  CAS  Google Scholar 

  80. Miyamoto KI, Segawa H, Ito M, Kuwahata M (2004) Physiological regulation of renal sodium-phosphate cotransporters. Japan J Physiol 54:83–102

    Article  Google Scholar 

  81. Molitoris BA, Alfrey AC, Harris RA, Simon FR (1985) Renal apical membrane cholesterol and fluidity in regulation of phosphate transport. Am J Physiol 249:F12–F19

    PubMed  CAS  Google Scholar 

  82. Mühlbauer RC, Bonjour JP, Fleisch H (1981) Tubular handling of Pi: localization of effects of 1,25(OH)2D3 and dietary Pi in TPTX rats. Am J Physiol 241:F123–F128

    PubMed  Google Scholar 

  83. Murer H, Forster I, Biber J (2004) The sodium phosphate cotransporter family SLC34. Pflügers Arch 447:763–767

    PubMed  CAS  Google Scholar 

  84. Murer H, Hernando N, Forster I, Biber J (2000) Proximal tubular phosphate reabsorption. Physiol Rev 80:1373–1409

    PubMed  CAS  Google Scholar 

  85. Nabeshima Y (2002) Klotho: a fundamental regulator of aging. Ageing Res Rev 1:627–638

    PubMed  CAS  Google Scholar 

  86. Nowik M, Lecca MR, Velic A, Rehrauer H, Brändli AW, Wagner CA (2008) Genome-wide gene expression profiling reveals renal genes regulated during metabolic acidosis. Physiol Genomics 32:322–334

    PubMed  CAS  Google Scholar 

  87. Nowik M, Picard N, Stange G, Capuano P, Tenenhouse HS, Biber J, Murer H (2008) Renal phosphaturia during metabolic acidosis revisited: Molecular mechanisms for decreased renal phosphate reabsorption. Pflügers Arch (in press). doi:10.1007/s00424-008-0530-5

  88. Perward F, Zhang MYH, Tenenhouse HS, Portale AA (2007) Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D 1a-hydroxylase expression in vitro. Am J Physiol 293:F1577–F1583

    Google Scholar 

  89. Pfister MF, Ruf I, Stange G, Ziegler U, Lederer E, Biber J, Murer H (1998) Parathyroid hormone leads to the lysosomal degradation of the renal type II Na+/Pi-cotransporter. Proc Natl Acad Sci (USA) 95:1909–1914

    CAS  Google Scholar 

  90. Picard N, Capuano P, Bacic D, Biber J, Murer H, Le Hir M, Kaissling B, Wagner C (2007) Differential regulation of renal Na/phosphate cotransporters NaPi-lla and NaPi-llc in response to parathyroid hormone (PTH). J Am Soc Nephrol 18:109A

    Google Scholar 

  91. Quarles LD (2003) Evidence for a bone-kidney axis regulating phosphate homeostasis. J Clin Invest 112:642–646

    PubMed  CAS  Google Scholar 

  92. Radanovic T, Gisler SM, Biber J, Murer H (2007) Topology of the type IIa Na+/Pi-cotransporter. J Membrane Biol 212:41–49

    Google Scholar 

  93. Ravera S, Virkki LV, Murer H, Forster IC (2007) Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. Am J Physiol 293:C606–C620

    CAS  Google Scholar 

  94. Reining S, Gisler SM, Biber J, Murer H, Hernando N (2007) Association of NaPI-lla with the interacting proteins PDZK2 and Gabarap. J Am Soc Nephrol 18:123A

    Google Scholar 

  95. Rowe PS, de Zoysa PA, Dong R, Wang HR, White KE, Econs MJ, Oudet CL (2000) MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics 67:54–68

    PubMed  CAS  Google Scholar 

  96. Rowe PS, Kumagai Y, Gutierrez G, Garrett IR, Blacher R, Rosen D, Cundy J, Navvab S, Chen D, Drezner MK, Quarles LD, Mundy GR (2004) MEPE has the properties of an osteoblastic phosphatonin and minhibin. Bone 34:303–319

    PubMed  CAS  Google Scholar 

  97. Saito H, Maeda A, Ohtomo S, Hirata M, Kusano K, Kato S, Ogata E, Segawa H, Miyamoto K, Fukushima N (2005) Circulating FGF-23 is regulated by 1alpha, 25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem 280:2543–2549

    PubMed  CAS  Google Scholar 

  98. Salaun C, Rodrigues P, Heard JM (2001) Transmembrane topology of Pit-2, a phosphate transporter-retrovirus receptor. J Virol 75:5584–5592

    PubMed  CAS  Google Scholar 

  99. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type ll Na/Pi cotransporter. J Biol Chem 277:19665–19672

    PubMed  CAS  Google Scholar 

  100. Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y, Kato S, Miyamoto K (2004) Intestinal Na–Pi cotransporter adaptation to dietary Pi content in vitamin D receptor null mice. Am J Physiol 287:F39–F47

    CAS  Google Scholar 

  101. Segawa H, Yamanaka S, Ito M, Kuwahata M, Shono M, Yamamoto T, Miyamoto KI (2005) Internalization of renal type llc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol 288:F587–F596

    CAS  Google Scholar 

  102. Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F, Furutani J, Tomoe Y, Ito M, Kuwahata M, Imura A, Nabeshima Y, Miyamoto KI (2007) Correlation between hyperphosphatemia and type ll Na-Pi cotransporter activity in klotho mice. Am J Physil 292:F769–F779

    CAS  Google Scholar 

  103. Segawa H, Yamanaka S, Onitsuka A, Tomoe Y, Kuwahata M, Ito M, Taketani Y, Miyamoto KI (2007) Parathyroid hormone-dependent endocytosis of renal type llc Na-Pi cotransporter. Am J Physiol 292:F395–F403

    CAS  Google Scholar 

  104. Shenolikar S, Voltz JW, Cunningham R, Weinman EJ (2004) Regulation of ion transport by the NHERF family of PDZ proteins. Physiology 19:48–54

    Google Scholar 

  105. Shenolikar S, Voltz JW, Minkoff CM, Wade J, Weinman EJ (2002) Targeted disruption of the mouse gene encoding a PDZ domain containing protein adaptor, NHERF-1, promotes Npt2 internalization and renal phosphate wasting. Proc Natl Acad Sci (USA) 99:11470–11475

    CAS  Google Scholar 

  106. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435

    PubMed  CAS  Google Scholar 

  107. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of FGF23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568

    PubMed  CAS  Google Scholar 

  108. Silve C, Friedlander G (2000) Renal regulation of phosphate excretion. In: Seldin DW, Giebisch GH (eds) The Kidney, 3rd edn. Williams & Wilkins, Philadelphia, Lippincott, pp 1885–1903

    Google Scholar 

  109. Sommer S, Berndt T, Craig T, Kumar R (2007) The phosphatonins and the regulation of phosphate transport and vitamin D metabolism. J Steroid Bioch Mole Biol 103:497–503

    CAS  Google Scholar 

  110. Spitzer A, Barac-Nieto M (2001) Ontogeny of renal phosphate transport and the process of growth. Pediatr Nephrol 16:763–771

    PubMed  CAS  Google Scholar 

  111. Syal A, Schiavi S, Chakravarty S, Dwarakanath V, Quigley R, Baum M (2006) Fibroblast growth factor-23 increases mouse PGE2 production in vivo and in vitro. Am J Physiol 290:F450–F455

    CAS  Google Scholar 

  112. Szczepanska-Konkel M, Yusufi AN, VanScoy M, Webster SK, Dousa TP (1986) Phosphonocarboxylic acids as specific inhibitors of Na-dependent transport of phosphate across renal brush border membranes. J Biol Chem 261:6375–6383

    PubMed  CAS  Google Scholar 

  113. Takeda E, Yamamoto H, Nashiki K, Sato T, Arai H, Taketani Y (2004) Inorganic phosphate homeostais and the role of dietary phosphorus. J Cell Mol Med 8:191–200

    PubMed  CAS  Google Scholar 

  114. Taketani Y, Segawa H, Chikamori M, Morita K, Tanaka K, Kido S, Yamamoto H, Iemori Y, Tatsumi S, Tsugawa N, Okano T, Kobayashi T, Miyamoto K, Takeda E (1998) Regulation of type renal Na-dpendent inorganic phosphate transporters by 1,25-dihydroxyvitamin D3. Identification of a vitamin D-responsive element in the human NaPi-3 gene. J Biol Chem 273:14575–14581

    PubMed  CAS  Google Scholar 

  115. Tenenhouse HS, Martel J, Gauthier C, Segawa H, Miyamoto K (2003) Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am J Physiol 285:F1271–F1278

    CAS  Google Scholar 

  116. Tenenhouse HS, Roy S, Martel J, Gauthier C (1998) Differential expression, abundance, and regulation of Na-phosphate cotransporter genes in murine kidney. Am J Physiol 275:F527–F534

    PubMed  CAS  Google Scholar 

  117. Tenenhouse HS, Sabbagh Y (2002) Novel phosphate-regulating genes in the pathogenesis of renal phosphate wasting disorders. Pflügers Arch 444:317–326

    PubMed  CAS  Google Scholar 

  118. Tohyama O, Imura A, Iwano A, freund JN, Henrissat B, Fujimori T, Nabeshima YI (2004) Klotho is a novel beta-glucuronidase capable of hydrolyzing steroid beta-glucuronides. J Biol Chem 279:9777–9784

    PubMed  CAS  Google Scholar 

  119. Traebert M, Volkl H, Biber J, Murer H, Kaislling B (2000) Luminal and contraluminal action of 1–34 and 3–34 PTH peptides on renal type lla Na/Pi-cotransporter. Am J Physiol 278:F792–F798

    CAS  Google Scholar 

  120. Tröhler U, Bonjour JP, Fleisch H (1976) Renal adaptation to dietary intake in intact and thyroparathyroidectomized rats. J Clin Invest 57:264–273

    PubMed  Google Scholar 

  121. Ullrich KJ, Murer H (1982) Sulfate and phosphate transport in rat kidney proximal tubule. Philos Trans R Soc Lond B Biol Sci 299:549–558

    PubMed  CAS  Google Scholar 

  122. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2007) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Google Scholar 

  123. Villa-Bellosta R, Barac-Nieto M, Breusegem SY, Barry NP, Levi M, Sorribas V (2008) Interactions of the growth-related, type llc renal sodium/phosphate cotransporter with PDZ proteins. Kidney Int 73:456–464

    PubMed  CAS  Google Scholar 

  124. Virkki LV, Biber J, Murer H, Forster IC (2007) Phosphate transporters: a tale of two solute carrier families. Am J Physiol 293:F643–F654

    Article  CAS  Google Scholar 

  125. Virkki LV, Forster IC, Biber J, Murer H (2005) Substrate interactions in the human type lla sodium-phosphate cotransporter (NaPi-lla). Am J Physiol 288:F969–F981

    CAS  Google Scholar 

  126. Wagner CA, Hernando N, Forster I, Biber J, Murer H (2008) Genetic defects in renal phosphate handling. In: Genetic diseases of the kidney, edited by Lifton RP, Somlo S, Giebisch G, Seldin DW, Elsevier, (in press).

  127. Weber TJ, Liu S, Indridason OS, Quarles LD (2003) Serum FGF23 levels in normal and disordered phosphorus homeostasis. J Bone Miner Res 18:1227–1234

    PubMed  CAS  Google Scholar 

  128. Weinman EJ, Biswas RS, Peng Q, Shen L, Turner CL, E X, Steplock D, Shenolikar S, Cunningham R (2007) Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor-1. J Clin Invest 117:3412–3420

    PubMed  CAS  Google Scholar 

  129. Yamashita T, Konishi M, Miyake A, Inui K, Itoh N (2002) Fibroblast growth factor (FGF)-23 inhibits renal phosphate reabsorption by activation of the mitogen-activated protein kinase pathway. J Biol Chem 277:28265–28270

    PubMed  CAS  Google Scholar 

  130. Yeaman C, Grindstaff KK, Hansen MD, Nelson WJ (1999) Cell polarity: versatile scaffolds keep things in place. Curr Biol 15:R515–R517

    Google Scholar 

  131. Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Beliveau R, Wilson R, Rogers T, Levi M (2001) Glycosphingolipids modulate renal phosphate transport in potassium deficiency. Kidney Int 60:694–704

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratories was supported by the Swiss National Science Foundation (SNF), the European Union (EuReGene), the Hartmann Müller Foundation, the Gebert Rüf Foundation, and Transregio SFB 11-Konstanz-Zürich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Biber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biber, J., Hernando, N., Forster, I. et al. Regulation of phosphate transport in proximal tubules. Pflugers Arch - Eur J Physiol 458, 39–52 (2009). https://doi.org/10.1007/s00424-008-0580-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0580-8

Keywords

Navigation