Skip to main content

Advertisement

Log in

Steroid hormone release as well as renal water and electrolyte excretion of mice expressing PKB/SGK-resistant GSK3

  • Signaling and Cell Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Insulin and insulin-like growth factor (IGF1) participate in the regulation of renal electrolyte excretion. Insulin- and IGF1-dependent signaling includes phosphatidylinositide-3 (PI3)-kinase, phosphoinositide-dependent kinase PDK1 as well as protein kinase B (PKB) and serum and glucocorticoid inducible kinase (SGK) isoforms, which in turn phosphorylate and thus inhibit glycogen synthase kinase GSK3α,β. Replacement of the serines in the PKB/SGK consensus sequences by alanine (gsk3 KI) confers resistance of GSK3 to PKB/SGK. To explore the role of PKB/SGK-dependent inhibition of GSK3 in the regulation of water/electrolyte metabolism, mice carrying the PKB/SGK resistant mutant (gsk3 KI) were compared to their wild-type littermates (gsk3 WT ). Body weight was similar in gsk3 KI and gsk3 WT mice. Plasma aldosterone at 10 a.m. and corticosterone concentrations at 5 p.m. were significantly lower, but 24-h urinary aldosterone was significantly higher, and corticosterone excretion tended to be higher in gsk3 KI than in gsk3 WT mice. Food and water intake, fecal excretion, glomerular filtration rate, urinary flow rate, urine osmolarity, as well as urinary Na+, K+, urea excretion were significantly larger, and plasma Na+, urea, but not K+ concentration, were significantly lower in gsk3 KI than in gsk3 WT mice. Body temperature was significantly higher in gsk3 KI than in gsk3 WT mice. When allowed to choose between tap water and saline, gsk3 WT mice drank more saline, whereas gsk3 KI mice drank similar large volumes of tap water and saline. During high-salt diet, urinary vasopressin excretion increased to significantly higher levels in gsk3 KI than in gsk3 WT mice. After water deprivation, body weight decreased faster in gsk3 KI than in gsk3 WT mice. Blood pressure, however, was significantly higher in gsk3 KI than in gsk3 WT mice. The observations disclose a role of PKB/SGK-dependent GSK3 activity in the regulation of steroid hormone release, renal water and electrolyte excretion and blood pressure control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akizuki N, Uchida S, Sasaki S, Marumo F (2001) Impaired solute accumulation in inner medulla of Clcnk1−/− mice kidney. Am J Physiol Renal Physiol 280:F79–F87

    PubMed  CAS  Google Scholar 

  2. Artunc F, Amann K, Nasir O, Friedrich B, Sandulache D, Jahovic N, Risler T, Vallon V, Wulff P, Kuhl D, Lang F (2006) Blunted DOCA/high salt induced albuminuria and renal tubulointerstitial damage in gene-targeted mice lacking SGK1. J Mol Med 84:737–746

    Article  PubMed  CAS  Google Scholar 

  3. Barriga C, Martin MI, Tabla R, Ortega E, Rodriguez AB (2001) Circadian rhythm of melatonin, corticosterone and phagocytosis: effect of stress. J Pineal Res 30:180–187

    Article  PubMed  CAS  Google Scholar 

  4. Beurel E, Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79:173–189

    Article  PubMed  CAS  Google Scholar 

  5. Bickel CA, Verbalis JG, Knepper MA, Ecelbarger CA (2001) Increased renal Na-K-ATPase, NCC, and beta-ENaC abundance in obese Zucker rats. Am J Physiol Renal Physiol 281:F639–F648

    PubMed  CAS  Google Scholar 

  6. Blazer-Yost BL, Esterman MA, Vlahos CJ (2003) Insulin-stimulated trafficking of ENaC in renal cells requires PI 3-kinase activity. Am J Physiol Cell Physiol 284:C1645–C1653

    PubMed  CAS  Google Scholar 

  7. Blazer-Yost BL, Vahle JC, Byars JM, Bacallao RL (2004) Real-time three-dimensional imaging of lipid signal transduction: apical membrane insertion of epithelial Na(+) channels. Am J Physiol Cell Physiol 287:C1569–C1576

    Article  PubMed  CAS  Google Scholar 

  8. Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D (1999) Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci U S A 96:2514–2519

    Article  PubMed  CAS  Google Scholar 

  9. Cohen P, Frame S (2001) The renaissance of GSK3. Nat Rev Mol Cell Biol 2:769–776

    Article  PubMed  CAS  Google Scholar 

  10. Cohen P, Goedert M (2004) GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov 3:479–487

    Article  PubMed  CAS  Google Scholar 

  11. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789

    Article  PubMed  CAS  Google Scholar 

  12. Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Munster C, Chraibi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O (2001) Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na(+) channel cell surface expression. EMBO J 20:7052–7059

    Article  PubMed  CAS  Google Scholar 

  13. Diakov A, Korbmacher C (2004) A novel pathway of epithelial sodium channel activation involves a serum- and glucocorticoid-inducible kinase consensus motif in the C terminus of the channel's alpha-subunit. J Biol Chem 279:38134–38142

    Article  PubMed  CAS  Google Scholar 

  14. Faletti CJ, Perrotti N, Taylor SI, Blazer-Yost BL (2002) sgk: an essential convergence point for peptide and steroid hormone regulation of ENaC-mediated Na+ transport. Am J Physiol Cell Physiol 282:C494–C500

    PubMed  CAS  Google Scholar 

  15. Firestone GL, Giampaolo JR, O'Keeffe BA (2003) Stimulus-dependent regulation of the serum and glucocorticoid inducible protein kinase (Sgk) transcription, subcellular localization and enzymatic activity. Cell Physiol Biochem 13:1–12

    Article  PubMed  CAS  Google Scholar 

  16. Frame S, Cohen P (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359:1–16

    Article  PubMed  CAS  Google Scholar 

  17. Harms E, Young MW, Saez L (2003) CK1 and GSK3 in the Drosophila and mammalian circadian clock. Novartis Found Symp 253:267–277

    Article  PubMed  CAS  Google Scholar 

  18. Haussinger D, Roth E, Lang F, Gerok W (1993) Cellular hydration state: an important determinant of protein catabolism in health and disease. Lancet 341:1330–1332

    Article  PubMed  CAS  Google Scholar 

  19. Huang DY, Wulff P, Volkl H, Loffing J, Richter K, Kuhl D, Lang F, Vallon V (2004) Impaired regulation of renal K+ elimination in the sgk1-knockout mouse. J Am Soc Nephrol 15:885–891

    Article  PubMed  CAS  Google Scholar 

  20. Hughes K, Ramakrishna S, Benjamin WB, Woodgett JR (1992) Identification of multifunctional ATP-citrate lyase kinase as the alpha-isoform of glycogen synthase kinase-3. Biochem J 288(Pt 1):309–314

    PubMed  CAS  Google Scholar 

  21. Jope RS, Yuskaitis CJ, Beurel E (2007) Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 32:577–595

    Article  PubMed  CAS  Google Scholar 

  22. Kaladchibachi SA, Doble B, Anthopoulos N, Woodgett JR, Manoukian AS (2007) Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: a molecular link in the therapeutic action of lithium. J Circadian Rhythms 5:3

    Article  PubMed  CAS  Google Scholar 

  23. Kaytor MD, Orr HT (2002) The GSK3 beta signaling cascade and neurodegenerative disease. Curr Opin Neurobiol 12:275–278

    Article  PubMed  CAS  Google Scholar 

  24. Koros E, Dorner-Ciossek C (2007) The role of glycogen synthase kinase-3beta in schizophrenia. Drug News Perspect 20:437–445

    Article  PubMed  CAS  Google Scholar 

  25. Lang F, Bohmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V (2006) (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 86:1151–1178

    Article  PubMed  CAS  Google Scholar 

  26. Le Roy C, Li JY, Stocco DM, Langlois D, Saez JM (2000) Regulation by adrenocorticotropin (ACTH), angiotensin II, transforming growth factor-beta, and insulin-like growth factor I of bovine adrenal cell steroidogenic capacity and expression of ACTH receptor, steroidogenic acute regulatory protein, cytochrome P450c17, and 3beta-hydroxysteroid dehydrogenase. Endocrinology 141:1599–1607

    Article  PubMed  Google Scholar 

  27. Matsui I, Ito T, Kurihara H, Imai E, Ogihara T, Hori M (2007) Snail, a transcriptional regulator, represses nephrin expression in glomerular epithelial cells of nephrotic rats. Lab Invest 87:273–283

    Article  PubMed  CAS  Google Scholar 

  28. McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, Alessi DR (2005) Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J 24:1571–1583

    Article  PubMed  CAS  Google Scholar 

  29. Meneton P, Ichikawa I, Inagami T, Schnermann J (2000) Renal physiology of the mouse. Am J Physiol Renal Physiol 278:F339–F351

    PubMed  CAS  Google Scholar 

  30. Nakatani K, Horinouchi J, Yabu Y, Wada H, Nobori T (2004) Expression of endothelial nitric oxide synthase is induced by estrogen with glycogen synthase 3beta phosphorylation in MCF-7 cells. Oncol Rep 12:833–836

    PubMed  CAS  Google Scholar 

  31. Naray-Fejes-Toth A, Canessa C, Cleaveland ES, Aldrich G, Fejes-Toth G (1999) Sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial Na+ channels. J Biol Chem 274:16973–16978

    Article  PubMed  CAS  Google Scholar 

  32. Neuhofer W, Beck FX (2005) Cell survival in the hostile environment of the renal medulla. Annu Rev Physiol 67:531–555

    Article  PubMed  CAS  Google Scholar 

  33. Nielsen J, Kwon TH, Praetorius J, Kim YH, Frokiaer J, Knepper MA, Nielsen S (2003) Segment-specific ENaC downregulation in kidney of rats with lithium-induced NDI. Am J Physiol Renal Physiol 285:F1198–F1209

    PubMed  CAS  Google Scholar 

  34. Pearce D (2003) SGK1 Regulation of epithelial sodium transport. Cell Physiol Biochem 13:013–020

    Article  CAS  Google Scholar 

  35. Raghavendra V, Agrewala JN, Kulkarni SK (1999) Role of centrally administered melatonin and inhibitors of COX and NOS in LPS-induced hyperthermia and adipsia. Prostaglandins Leukot Essent Fatty Acids 60:249–253

    Article  PubMed  CAS  Google Scholar 

  36. Rao R, Zhang MZ, Zhao M, Cai H, Harris RC, Breyer MD, Hao CM (2005) Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am J Physiol Renal Physiol 288:F642–F649

    Article  PubMed  CAS  Google Scholar 

  37. Sakoda H, Gotoh Y, Katagiri H, Kurokawa M, Ono H, Onishi Y, Anai M, Ogihara T, Fujishiro M, Fukushima Y, Abe M, Shojima N, Kikuchi M, Oka Y, Hirai H, Asano T (2003) Differing roles of Akt and serum- and glucocorticoid-regulated kinase in glucose metabolism, DNA synthesis, and oncogenic activity. J Biol Chem 278:25802–25807

    Article  PubMed  CAS  Google Scholar 

  38. Shaw M, Cohen P, Alessi DR (1997) Further evidence that the inhibition of glycogen synthase kinase-3beta by IGF-1 is mediated by PDK1/PKB-induced phosphorylation of Ser-9 and not by dephosphorylation of Tyr-216. FEBS Lett 416:307–311

    Article  PubMed  CAS  Google Scholar 

  39. Song J, Hu X, Shi M, Knepper MA, Ecelbarger CA (2004) Effects of dietary fat, NaCl, and fructose on renal sodium and water transporter abundances and systemic blood pressure. Am J Physiol Renal Physiol 287:F1204–F1212

    Article  PubMed  CAS  Google Scholar 

  40. Tong Q, Gamper N, Medina JL, Shapiro MS, Stockand JD (2004) Direct activation of the epithelial Na(+) channel by phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate produced by phosphoinositide 3-OH kinase. J Biol Chem 279:22654–22663

    Article  PubMed  CAS  Google Scholar 

  41. Vallon V (2003) In vivo studies of the genetically modified mouse kidney. Nephron Physiol 94:1–5

    Article  Google Scholar 

  42. Welsh GI, Proud CG (1993) Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem J 294(Pt 3):625–629

    PubMed  CAS  Google Scholar 

  43. Wulff P, Vallon V, Huang DY, Volkl H, Yu F, Richter K, Jansen M, Schlunz M, Klingel K, Loffing J, Kauselmann G, Bosl MR, Lang F, Kuhl D (2002) Impaired renal Na(+) retention in the sgk1-knockout mouse. J Clin Invest 110:1263–1268

    PubMed  CAS  Google Scholar 

  44. Yao L, Huang DY, Pfaff IL, Nie X, Leitges M, Vallon V (2004) Evidence for a role of protein kinase C-alpha in urine concentration. Am J Physiol Renal Physiol 287:F299–F304

    Article  PubMed  CAS  Google Scholar 

  45. Zhang YH, Alvarez dlR, Canessa CM, Hayslett JP (2005) Insulin-induced phosphorylation of ENaC correlates with increased sodium channel function in A6 cells. Am J Physiol Cell Physiol 288:C141–C147

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Dario Alessi for providing the gsk3 KI mice. The authors further acknowledge the support by the DFG (GRK 1302/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Additional information

Krishna M. Boini and Madhuri Bhandaru contributed equally and thus share first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boini, K.M., Bhandaru, M., Mack, A. et al. Steroid hormone release as well as renal water and electrolyte excretion of mice expressing PKB/SGK-resistant GSK3. Pflugers Arch - Eur J Physiol 456, 1207–1216 (2008). https://doi.org/10.1007/s00424-008-0483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0483-8

Keywords

Navigation