Skip to main content
Log in

Functional coupling of Gs and CFTR is independent of their association with lipid rafts in epithelial cells

  • Ion Channels
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cystic fibrosis transmembrane conductance regulator (CFTR) has been found to be colocalized with G-protein-coupled receptors (GPCRs) and the downstream signaling molecules; however, the mechanisms of the colocalization remain largely elusive. The present work has investigated the role of lipid rafts in the localized signaling from GPCRs to CFTR. Using commonly used sucrose gradient centrifugation, we found that CFTR along with \({\text{G}}_\alpha {\text{s}}\) was associated with lipid rafts, and the association was disrupted by cholesterol depletion with methyl-β-cyclodextrin (MCD) treatment in Calu-3 human airway epithelial cells. Using short-circuit current (I sc) as a readout of CFTR in Calu-3 cells or T84 human colonic epithelial cells, we showed that MCD, while increasing basal membrane permeability, had no effect on the I sc induced by several GPCR agonists. Similar results were also obtained with a cholesterol biosynthesis inhibitor lovastatin and a cholesterol-binding agent filipin in Calu-3 cells. Furthermore, cholesterol depletion did not impair cyclic AMP production elicited by the GPCR agonists in Calu-3 cells. Our data suggest that GPCR-mediated signaling maintain their integrity after lipid raft disruption in Calu-3 and T84 epithelial cells and cast doubts on the role of lipid rafts as signaling platforms in GPCR-mediated signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barnes AP, Livera G, Huang P, Sun C, O’Neal WK, Conti M, Stutts MJ, Milgram SL (2005) Phosphodiesterase 4D forms a cAMP diffusion barrier at the apical membrane of the airway epithelium. J Biol Chem 280:7997–8003

    Article  PubMed  CAS  Google Scholar 

  2. Ben-Arie N, Gileadi C, Schramm M (1988) Interaction of the beta-adrenergic receptor with Gs following delipidation. Specific lipid requirements for Gs activation and GTPase function. Eur J Biochem 176:649–654

    Article  PubMed  CAS  Google Scholar 

  3. Borner GH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, Macaskill A, Napier JA, Beale MH, Lilley KS, Dupree P (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137:104–116

    Article  PubMed  CAS  Google Scholar 

  4. Bradbury NA, Clark JA, Watkins SC, Widnell CC, Smith HSt, Bridges RJ (1999) Characterization of the internalization pathways for the cystic fibrosis transmembrane conductance regulator. Am J Physiol 276:L659–L668

    PubMed  CAS  Google Scholar 

  5. Chamberlain LH (2004) Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 559:1–5

    Article  PubMed  CAS  Google Scholar 

  6. Chini B, Parenti M (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol 32:325–338

    Article  PubMed  CAS  Google Scholar 

  7. Chmelar RS, Nathanson NM (2006) Identification of a novel apical sorting motif and mechanism of targeting of the M2 muscarinic acetylcholine receptor. J Biol Chem 281:35381–35396

    Article  PubMed  CAS  Google Scholar 

  8. Crossthwaite AJ, Ciruela A, Rayner TF, Cooper DM (2006) A direct interaction between the N terminus of adenylyl cyclase AC8 and the catalytic subunit of protein phosphatase 2A. Mol Pharmacol 69:608–617

    Article  PubMed  CAS  Google Scholar 

  9. Devor DC, Singh AK, Lambert LC, DeLuca A, Frizzell RA, Bridges RJ (1999) Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. J Gen Physiol 113:743–760

    Article  PubMed  CAS  Google Scholar 

  10. Dreja K, Voldstedlund M, Vinten J, Tranum-Jensen J, Hellstrand P, Sward K (2002) Cholesterol depletion disrupts caveolae and differentially impairs agonist-induced arterial contraction. Arterioscler Thromb Vasc Biol 22:1267–1272

    Article  PubMed  CAS  Google Scholar 

  11. Elliott MH, Fliesler SJ, Ghalayini AJ (2003) Cholesterol-dependent association of caveolin-1 with the transducin alpha subunit in bovine photoreceptor rod outer segments: disruption by cyclodextrin and guanosine 5′-O-(3-thiotriphosphate). Biochemistry 42:7892–7903

    Article  PubMed  CAS  Google Scholar 

  12. Fagan KA, Smith KE, Cooper DM (2000) Regulation of the Ca2+-inhibitable adenylyl cyclase type VI by capacitative Ca2+ entry requires localization in cholesterol-rich domains. J Biol Chem 275:26530–26537

    Article  PubMed  CAS  Google Scholar 

  13. Foster LJ, De Hoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 100:5813–5818

    Article  PubMed  CAS  Google Scholar 

  14. Hansen GH, Niels-Christiansen LL, Thorsen E, Immerdal L, Danielsen EM (2000) Cholesterol depletion of enterocytes. Effect on the Golgi complex and apical membrane trafficking. J Biol Chem 275:5136–5142

    Article  PubMed  CAS  Google Scholar 

  15. Hering H, Lin CC, Sheng M (2003) Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 23:3262–3271

    PubMed  CAS  Google Scholar 

  16. Huang P, Lazarowski ER, Tarran R, Milgram SL, Boucher RC, Stutts MJ (2001) Compartmentalized autocrine signaling to cystic fibrosis transmembrane conductance regulator at the apical membrane of airway epithelial cells. Proc Natl Acad Sci USA 98:14120–14125

    Article  PubMed  CAS  Google Scholar 

  17. Huang P, Trotter K, Boucher RC, Milgram SL, Stutts MJ (2000) PKA holoenzyme is functionally coupled to CFTR by AKAPs. Am J Physiol Cell Physiol 278:C417–422

    PubMed  CAS  Google Scholar 

  18. Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  PubMed  CAS  Google Scholar 

  19. Jia Y, Mathews CJ, Hanrahan JW (1997) Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A. J Biol Chem 272:4978–4984

    Article  PubMed  CAS  Google Scholar 

  20. Keller P, Simons K (1998) Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol 140:1357–1367

    Article  PubMed  CAS  Google Scholar 

  21. Kowalski MP, Pier GB (2004) Localization of cystic fibrosis transmembrane conductance regulator to lipid rafts of epithelial cells is required for Pseudomonas aeruginosa-induced cellular activation. J Immunol 172:418–425

    PubMed  CAS  Google Scholar 

  22. Krouse ME, Talbott JF, Lee MM, Joo NS, Wine JJ (2004) Acid and base secretion in the Calu-3 model of human serous cells. Am J Physiol Lung Cell Mol Physiol 287:L1274–1283

    Article  PubMed  CAS  Google Scholar 

  23. Lipardi C, Nitsch L, Zurzolo C (2000) Detergent-insoluble GPI-anchored proteins are apically sorted in Fischer rat thyroid cells, but interference with cholesterol or sphingolipids differentially affects detergent insolubility and apical sorting. Mol Biol Cell 11:531–542

    PubMed  CAS  Google Scholar 

  24. Martens JR, Sakamoto N, Sullivan SA, Grobaski TD, Tamkun MM (2001) Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J Biol Chem 276:8409–8414

    Article  PubMed  CAS  Google Scholar 

  25. Meiri KF (2005) Lipid rafts and regulation of the cytoskeleton during T cell activation. Philos Trans R Soc Lond B Biol Sci 360:1663–1672

    Article  PubMed  CAS  Google Scholar 

  26. Middleton LM, Harvey RD (1998) PKC regulation of cardiac CFTR Cl− channel function in guinea pig ventricular myocytes. Am J Physiol 275:C293–C302

    PubMed  CAS  Google Scholar 

  27. Miura Y, Hanada K, Jones TL (2001) G(s) signaling is intact after disruption of lipid rafts. Biochemistry 40:15418–15423

    Article  PubMed  CAS  Google Scholar 

  28. Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388

    Article  PubMed  CAS  Google Scholar 

  29. Naren AP, Cobb B, Li C, Roy K, Nelson D, Heda GD, Liao J, Kirk KL, Sorscher EJ, Hanrahan J, Clancy JP (2003) A macromolecular complex of beta 2 adrenergic receptor, CFTR, and ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA. Proc Natl Acad Sci USA 100:342–346

    Article  PubMed  CAS  Google Scholar 

  30. Ostermeyer AG, Beckrich BT, Ivarson KA, Grove KE, Brown DA (1999) Glycosphingolipids are not essential for formation of detergent-resistant membrane rafts in melanoma cells. Methyl-beta-cyclodextrin does not affect cell surface transport of a GPI-anchored protein. J Biol Chem 274:34459–34466

    Article  PubMed  CAS  Google Scholar 

  31. Ostrom RS, Gregorian C, Drenan RM, Xiang Y, Regan JW, Insel PA (2001) Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J Biol Chem 276:42063–42069

    Article  PubMed  CAS  Google Scholar 

  32. Ostrom RS, Insel PA (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol 143:235–245

    Article  PubMed  CAS  Google Scholar 

  33. Ostrom RS, Liu X, Head BP, Gregorian C, Seasholtz TM, Insel PA (2002) Localization of adenylyl cyclase isoforms and G protein-coupled receptors in vascular smooth muscle cells: expression in caveolin-rich and noncaveolin domains. Mol Pharmacol 62:983–992

    Article  PubMed  CAS  Google Scholar 

  34. Pang L, Graziano M, Wang S (1999) Membrane cholesterol modulates galanin-GalR2 interaction. Biochemistry 38:12003–12011

    Article  PubMed  CAS  Google Scholar 

  35. Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378:281–292

    Article  PubMed  CAS  Google Scholar 

  36. Pike LJ (2006) Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47:1597–1598

    Article  PubMed  CAS  Google Scholar 

  37. Pike LJ, Miller JM (1998) Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J Biol Chem 273:22298–22304

    Article  PubMed  CAS  Google Scholar 

  38. Radeva G, Sharom FJ (2004) Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells. Biochem J 380:219–230

    Article  PubMed  CAS  Google Scholar 

  39. Ropero S, Chiloeches A, Montes A, Toro-Nozal MJ (2003) Cholesterol cell content modulates GTPase activity of G proteins in GH4C1 cell membranes. Cell Signal 15:131–138

    Article  PubMed  CAS  Google Scholar 

  40. Sabourin T, Bastien L, Bachvarov DR, Marceau F (2002) Agonist-induced translocation of the kinin B(1) receptor to caveolae-related rafts. Mol Pharmacol 61:546–553

    Article  PubMed  CAS  Google Scholar 

  41. Schuck S, Simons K (2004) Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 117:5955–5964

    Article  PubMed  CAS  Google Scholar 

  42. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  43. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  CAS  Google Scholar 

  44. Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    Article  PubMed  CAS  Google Scholar 

  45. Sitaraman SV, Wang L, Wong M, Bruewer M, Hobert M, Yun CH, Merlin D, Madara JL (2002) The adenosine 2b receptor is recruited to the plasma membrane and associates with E3KARP and Ezrin upon agonist stimulation. J Biol Chem 277:33188–33195

    Article  PubMed  CAS  Google Scholar 

  46. Soong G, Reddy B, Sokol S, Adamo R, Prince A (2004) TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J Clin Invest 113:1482–1489

    PubMed  CAS  Google Scholar 

  47. Sun F, Hug MJ, Lewarchik CM, Yun CH, Bradbury NA, Frizzell RA (2000) E3KARP mediates the association of ezrin and protein kinase A with the cystic fibrosis transmembrane conductance regulator in airway cells. J Biol Chem 275:29539–29546

    Article  PubMed  CAS  Google Scholar 

  48. van Rheenen J, Achame EM, Janssen H, Calafat J, Jalink K (2005) PIP2 signaling in lipid domains: a critical re-evaluation. EMBO J 24:1664–1673

    Article  PubMed  Google Scholar 

  49. Whetton AD, Gordon LM, Houslay MD (1983) Adenylate cyclase is inhibited upon depletion of plasma-membrane cholesterol. Biochem J 212:331–338

    PubMed  CAS  Google Scholar 

  50. Xiang Y, Rybin VO, Steinberg SF, Kobilka B (2002) Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. J Biol Chem 277:34280–34286

    Article  PubMed  CAS  Google Scholar 

  51. Yu P, Yang Z, Jones JE, Wang Z, Owens SA, Mueller SC, Felder RA, Jose PA (2004) D1 dopamine receptor signaling involves caveolin-2 in HEK-293 cells. Kidney Int 66:2167–2180

    Article  PubMed  CAS  Google Scholar 

  52. Zajchowski LD, Robbins SM (2002) Lipid rafts and little caves. Compartmentalized signalling in membrane microdomains. Eur J Biochem 269:737–752

    Article  PubMed  CAS  Google Scholar 

  53. Zhu D, Xiong WC, Mei L (2006) Lipid rafts serve as a signaling platform for nicotinic acetylcholine receptor clustering. J Neurosci 26:4841–4851

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Ms. Youquan Li for the excellent technical assistance. The work was supported by the Hong Kong University Grant Committee Direct Allocation grant DAG02/03.SC06 and Research Grant Council grant HKUST6468/05M. Y. Wang was supported by postdoctoral matching funds from the Hong Kong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingbo Huang.

Additional information

D. Wang and W. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Wang, W., Duan, Y. et al. Functional coupling of Gs and CFTR is independent of their association with lipid rafts in epithelial cells. Pflugers Arch - Eur J Physiol 456, 929–938 (2008). https://doi.org/10.1007/s00424-008-0460-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0460-2

Keywords

Navigation