Skip to main content

Advertisement

Log in

Differential modulation of unapposed connexin 43 hemichannel electrical conductance by protein kinase C isoforms

  • Ion Channels
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Opening of unapposed connexin 43 hemichannels (Cx43Hc) in the plasma membrane results in altered ionic homeostasis leading to cell damage. Although it is generally acknowledged that Cx43Hc function is regulated by protein kinase C (PKC), information regarding the functional role of PKC in the modulation of Cx43Hc electrical conductance is lacking. In this work, we used the patch-clamp technique to study the effect of phorbol 12-myristate 13-acetate (PMA), a general PKC activator, on the electrical conductance of exogenous Cx43Hc expressed in tsA201 cells. Subsequently, a matrix of synthetic PKC isoform-specific inhibitor peptides was used to dissect the functional role of individual PKC isoforms in Cx43Hc regulation. Superfusion with 10 nM PMA abolished Cx43Hc currents by 74%, an effect that was prevented by pretreatment with a general PKC inhibitor, GF109203X. It is interesting to note that intracellular diffusion of ɛV1–2 (0.1 μM), an ɛPKC-specific inhibitor peptide, completely antagonized PMA-induced current inhibition. Cell dialysis with either βII- or δPKC inhibitor peptides partially decreased PMA effect. Neither α- nor βIPKC inhibition altered PMA-induced current reduction. This study shows for the first time that Cx43Hc electrical conductance is inhibited after PKC activation. Moreover, this inhibition is predominantly mediated by the “novel” ɛPKC isoform, whereas partial inhibition may be provided by the “conventional” βIIPKC as well as the “novel” δPKC isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bao X, Altenberg GA, Reuss L (2004) Mechanism of regulation of the gap junction protein connexin 43 by protein kinase C-mediated phosphorylation. Am J Physiol Cell Physiol 286:C647–C654

    Article  PubMed  CAS  Google Scholar 

  2. Bao X, Lee SC, Reuss L, Altenberg GA (2007) Change in permeant size selectivity by phosphorylation of connexin 43 gap-junctional hemichannels by PKC. Proc Natl Acad Sci USA 104:4919–4924

    Article  PubMed  CAS  Google Scholar 

  3. Bar-Am O, Amit T, Youdim MB (2007) Aminoindan and hydroxyaminoindan, metabolites of rasagiline and ladostigil, respectively, exert neuroprotective properties in vitro. J Neurochem 103:500–508

    Article  PubMed  CAS  Google Scholar 

  4. Barker RJ, Price RL, Gourdie RG (2001) Increased co-localization of connexin43 and ZO-1 in dissociated adult myocytes. Cell Adhes Commun 8:205–208

    Article  CAS  Google Scholar 

  5. Baroudi G, Qu Y, Ramadan O, Chahine M, Boutjdir M (2006) Protein kinase C activation inhibits Cav1.3 calcium channel at NH2-terminal serine 81 phosphorylation site. Am J Physiol Heart Circ Physiol 291:H1614–H1622

    Article  PubMed  CAS  Google Scholar 

  6. Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kleber AG, Schuessler RB, Saffitz JE (2000) Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87:656–662

    PubMed  CAS  Google Scholar 

  7. Berthoud VM, Minogue PJ, Laing JG, Beyer EC (2004) Pathways for degradation of connexins and gap junctions. Cardiovasc Res 62:256–267

    Article  PubMed  CAS  Google Scholar 

  8. Boucher S, Bennett SA (2003) Differential connexin expression, gap junction intercellular coupling, and hemichannel formation in NT2/D1 human neural progenitors and terminally differentiated hNT neurons. J Neurosci Res 72:393–404

    Article  PubMed  CAS  Google Scholar 

  9. Bukauskas FF, Verselis VK (2004) Gap junction channel gating. Biochim Biophys Acta 1662:42–60

    Article  PubMed  CAS  Google Scholar 

  10. Casellini CM, Barlow PM, Rice AL, Casey M, Simmons K, Pittenger G, Bastyr EJ III, Wolka AM, Vinik AI (2007) A 6-month, randomized, double-masked, placebo-controlled study evaluating the effects of the protein kinase C-beta inhibitor ruboxistaurin on skin microvascular blood flow and other measures of diabetic peripheral neuropathy. Diabetes Care 30:896–902

    Article  PubMed  CAS  Google Scholar 

  11. Chou WH, Messing RO (2005) Protein kinase C isozymes in stroke. Trends Cardiovasc Med 15:47–51

    Article  PubMed  CAS  Google Scholar 

  12. Contreras JE, Saez JC, Bukauskas FF, Bennett MV (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci USA 100:11388–11393

    Article  PubMed  CAS  Google Scholar 

  13. Contreras JE, Sanchez HA, Eugenin EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Saez JC (2002) Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci USA 99:495–500

    Article  PubMed  CAS  Google Scholar 

  14. Ebihara L, Steiner E (1993) Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes. J Gen Physiol 102:59–74

    Article  PubMed  CAS  Google Scholar 

  15. Ek-Vitorin JF, King TJ, Heyman NS, Lampe PD, Burt JM (2006) Selectivity of connexin 43 channels is regulated through protein kinase C-dependent phosphorylation. Circ Res 98:1498–1505

    Article  PubMed  CAS  Google Scholar 

  16. Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY, Ellisman MH (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507

    Article  PubMed  CAS  Google Scholar 

  17. Giepmans BN (2004) Gap junctions and connexin-interacting proteins. Cardiovasc Res 62:233–245

    Article  PubMed  CAS  Google Scholar 

  18. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  19. Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472

    PubMed  CAS  Google Scholar 

  20. Hatanaka K, Kawata H, Toyofuku T, Yoshida K (2004) Down-regulation of connexin43 in early myocardial ischemia and protective effect by ischemic preconditioning in rat hearts in vivo. Jpn Heart J 45:1007–1019

    Article  PubMed  CAS  Google Scholar 

  21. Hofer A, Dermietzel R (1998) Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia 24:141–154

    Article  PubMed  CAS  Google Scholar 

  22. Hu K, Mochly-Rosen D, Boutjdir M (2000) Evidence for functional role of epsilonPKC isozyme in the regulation of cardiac Ca(2+) channels. Am J Physiol Heart Circ Physiol 279:H2658–H2664

    PubMed  CAS  Google Scholar 

  23. Jain SK, Schuessler RB, Saffitz JE (2003) Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning. Circ Res 92:1138–1144

    Article  PubMed  CAS  Google Scholar 

  24. Jeyaraman M, Tanguy S, Fandrich RR, Lukas A, Kardami E (2003) Ischemia-induced dephosphorylation of cardiomyocyte connexin-43 is reduced by okadaic acid and calyculin A but not fostriecin. Mol Cell Biochem 242:129–134

    Article  PubMed  CAS  Google Scholar 

  25. John S, Cesario D, Weiss JN (2003) Gap junctional hemichannels in the heart. Acta Physiol Scand 179:23–31

    Article  PubMed  CAS  Google Scholar 

  26. John SA, Kondo R, Wang SY, Goldhaber JI, Weiss JN (1999) Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 274:236–240

    Article  PubMed  CAS  Google Scholar 

  27. Jurman ME, Boland LM, Liu Y, Yellen G (1994) Visual identification of individual transfected cells for electrophysiology using antibody-coated beads. Biotechniques 17:876–881

    PubMed  CAS  Google Scholar 

  28. Kondo RP, Wang SY, John SA, Weiss JN, Goldhaber JI (2000) Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes. J Mol Cell Cardiol 32:1859–1872

    Article  PubMed  CAS  Google Scholar 

  29. Kwak BR, Hermans MM, De Jonge HR, Lohmann SM, Jongsma HJ, Chanson M (1995) Differential regulation of distinct types of gap junction channels by similar phosphorylating conditions. Mol Biol Cell 6:1707–1719

    PubMed  CAS  Google Scholar 

  30. Kwak BR, Jongsma HJ (1996) Regulation of cardiac gap junction channel permeability and conductance by several phosphorylating conditions. Mol Cell Biochem 157:93–99

    Article  PubMed  CAS  Google Scholar 

  31. Laird DW, Puranam KL, Revel JP (1991) Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J 273(Pt 1):67–72

    PubMed  CAS  Google Scholar 

  32. Leaney JL, Dekker LV, Tinker A (2001) Regulation of a G protein-gated inwardly rectifying K+ channel by a Ca(2+)-independent protein kinase C. J Physiol 534:367–379

    Article  PubMed  CAS  Google Scholar 

  33. Li H, Liu TF, Lazrak A, Peracchia C, Goldberg GS, Lampe PD, Johnson RG (1996) Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells. J Cell Biol 134:1019–1030

    Article  PubMed  CAS  Google Scholar 

  34. Liu GS, Cohen MV, Mochly-Rosen D, Downey JM (1999) Protein kinase C-epsilon is responsible for the protection of preconditioning in rabbit cardiomyocytes. J Mol Cell Cardiol 31:1937–1948

    Article  PubMed  CAS  Google Scholar 

  35. Miura T, Ohnuma Y, Kuno A, Tanno M, Ichikawa Y, Nakamura Y, Yano T, Miki T, Sakamoto J, Shimamoto K (2004) Protective role of gap junctions in preconditioning against myocardial infarction. Am J Physiol Heart Circ Physiol 286:H214–H221

    Article  PubMed  CAS  Google Scholar 

  36. Moreno AP, Fishman GI, Spray DC (1992) Phosphorylation shifts unitary conductance and modifies voltage dependent kinetics of human connexin43 gap junction channels. Biophys J 62:51–53

    PubMed  CAS  Google Scholar 

  37. Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 233:305–312

    Article  PubMed  CAS  Google Scholar 

  38. Nishizuka Y (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334:661–665

    Article  PubMed  CAS  Google Scholar 

  39. Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K + channel and protein kinase C activation. Basic Res Cardiol 101:180–189

    Article  PubMed  CAS  Google Scholar 

  40. Philipp S, Yang XM, Cui L, Davis AM, Downey JM, Cohen MV (2006) Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovasc Res 70:308–314

    Article  PubMed  CAS  Google Scholar 

  41. Plotkin LI, Bellido T (2001) Bisphosphonate-induced, hemichannel-mediated, anti-apoptosis through the Src/ERK pathway: a gap junction-independent action of connexin43. Cell Adhes Commun 8:377–382

    Article  CAS  Google Scholar 

  42. Plotkin LI, Manolagas SC, Bellido T (2002) Transduction of cell survival signals by connexin-43 hemichannels. J Biol Chem 277:8648–8657

    Article  PubMed  CAS  Google Scholar 

  43. Romanello M, D’Andrea P (2001) Dual mechanism of intercellular communication in HOBIT osteoblastic cells: a role for gap-junctional hemichannels. J Bone Miner Res 16:1465–1476

    Article  PubMed  CAS  Google Scholar 

  44. Saez JC, Contreras JE, Bukauskas FF, Retamal MA, Bennett MV (2003) Gap junction hemichannels in astrocytes of the CNS. Acta Physiol Scand 179:9–22

    Article  PubMed  CAS  Google Scholar 

  45. Saez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV (2005) Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta 1711:215–224

    Article  PubMed  CAS  Google Scholar 

  46. Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 17:1355–1357

    PubMed  CAS  Google Scholar 

  47. Schwanke U, Li X, Schulz R, Heusch G (2003) No ischemic preconditioning in heterozygous connexin 43-deficient mice–a further in vivo study. Basic Res Cardiol 98:181–182

    PubMed  Google Scholar 

  48. Serova M, Ghoul A, Benhadji KA, Cvitkovic E, Faivre S, Calvo F, Lokiec F, Raymond E (2006) Preclinical and clinical development of novel agents that target the protein kinase C family. Semin Oncol 33:466–478

    Article  PubMed  CAS  Google Scholar 

  49. Shintani-Ishida K, Uemura K, Yoshida KI (2007) Hemichannels in cardiomyocytes open transiently during ischemia and contribute to reperfusion injury following brief ischemia. Am J Physiol Heart Circ Physiol 293:H1714–H1720

    Article  PubMed  CAS  Google Scholar 

  50. Souroujon MC, Mochly-Rosen D (1998) Peptide modulators of protein–protein interactions in intracellular signaling. Nat Biotechnol 16:919–924

    Article  PubMed  CAS  Google Scholar 

  51. Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    Article  PubMed  CAS  Google Scholar 

  52. Thimm J, Mechler A, Lin H, Rhee S, Lal R (2005) Calcium-dependent open/closed conformations and interfacial energy maps of reconstituted hemichannels. J Biol Chem 280:10646–10654

    Article  PubMed  CAS  Google Scholar 

  53. van Veen AA, van Rijen HV, Opthof T (2001) Cardiac gap junction channels: modulation of expression and channel properties. Cardiovasc Res 51:217–229

    Article  PubMed  Google Scholar 

  54. van Veen TA, van Rijen HV, Jongsma HJ (2006) Physiology of cardiovascular gap junctions. Adv Cardiol 42:18–40

    Article  PubMed  Google Scholar 

  55. Vergara L, Bao X, Cooper M, Bello-Reuss E, Reuss L (2003) Gap-junctional hemichannels are activated by ATP depletion in human renal proximal tubule cells. J Membr Biol 196:173–184

    Article  PubMed  CAS  Google Scholar 

  56. Weng S, Lauven M, Schaefer T, Polontchouk L, Grover R, Dhein S (2002) Pharmacological modification of gap junction coupling by an antiarrhythmic peptide via protein kinase C activation. FASEB J 16:1114–1116

    PubMed  CAS  Google Scholar 

  57. Xiao GQ, Mochly-Rosen D, Boutjdir M (2003) PKC isozyme selective regulation of cloned human cardiac delayed slow rectifier K current. Biochem Biophys Res Commun 306:1019–1025

    Article  PubMed  CAS  Google Scholar 

  58. Xiao GQ, Qu Y, Sun ZQ, Mochly-Rosen D, Boutjdir M (2001) Evidence for functional role of epsilonPKC isozyme in the regulation of cardiac Na(+) channels. Am J Physiol Cell Physiol 281:C1477–C1486

    PubMed  CAS  Google Scholar 

  59. Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596

    PubMed  CAS  Google Scholar 

  60. Ytrehus K, Liu Y, Downey JM (1994) Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Physiol 266:H1145–H1152

    PubMed  CAS  Google Scholar 

  61. Zatta AJ, Kin H, Lee G, Wang N, Jiang R, Lust R, Reeves JG, Mykytenko J, Guyton RA, Zhao ZQ, Vinten-Johansen J (2006) Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signalling. Cardiovasc Res 70:315–324

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by startup funds from the Centre de Recherche, Hôpital du Sacré Cœur de Montréal, and by grants from the Natural Sciences and Engineering Research Council and Quebec Heart and Stroke Foundation. We are grateful for Dr René Cardinal for helpful assistance and critical reading of the manuscript. The expression plasmids used in this study were constructed from materials generously provided by Dr Pascal Daleau, Université Laval, Sainte-Foy, Québec, G1V 7P4. Expression tsA201 cells were kindly supplied by Dr. Mohamed Chahine, Université Laval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Baroudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawat, G., Baroudi, G. Differential modulation of unapposed connexin 43 hemichannel electrical conductance by protein kinase C isoforms. Pflugers Arch - Eur J Physiol 456, 519–527 (2008). https://doi.org/10.1007/s00424-007-0426-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0426-9

Keywords

Navigation