Pflügers Archiv - European Journal of Physiology

, Volume 455, Issue 5, pp 961–970 | Cite as

Red and green aequorins for simultaneous monitoring of Ca2+ signals from two different organelles

  • Isabel M. Manjarrés
  • Pablo Chamero
  • Beatriz Domingo
  • Francisca Molina
  • Juan Llopis
  • María Teresa Alonso
  • Javier García-SanchoEmail author
Instruments and Techniques


Simultaneous control of different functions by calcium signals is possible because of subcellular compartmentalization. Targeted chemiluminescent Ca2+ probes, such as aequorins (AEQs) are optimal for detecting signals originating in different subcellular domains, but imaging is difficult because of low photon yield causing poor spatiotemporal resolution. To overcome this problem, we have co-expressed two spectrally distinct AEQs in different subcellular locations within the same cells. Seven chimeric proteins containing either green- or red-emitting AEQs, with different targeting sequences and Ca2+ affinities, have been designed and tested. We show here evidence for physical and functional independence of the different probes. Cytosolic Ca2+ signals were mirrored in the nucleus, but amplified inside mitochondria and endoplasmic reticulum, and had different time courses in the various locations. Our results demonstrate that these novel tools permit simultaneous and independent monitoring of [Ca2+] in different subcellular domains of the same cell.


Calcium signalling Microdomains Aequorin Chemiluminescence GFP RFP 



green fluorescent protein


red fluorescent protein


monomeric RFP




chimeric GFP-AEQ protein


chimeric mRFP-AEQ protein


endoplasmic reticulum


cytosolic Ca2+ concentration


nuclear Ca2+ concentration


Ca2+ concentration inside ER


mitochondrial Ca2+ concentration


mitochondrial membrane potential





We thank Mr. Jesús Fernández for technical assistance and the Spanish Ministerio de Educación y Ciencia (MEC; BFU2004-02765/BFI, and BFU2005-02078) and Junta de Castilla y León (VA-088/A06) for financial support. IMM and BD held predoctoral fellowships from MEC and Junta de Comunidades de Castilla-La Mancha, respectively.


  1. 1.
    Chad JE, Eckert R (1984) Calcium domains associated with individual channels can account for anomalous voltage relations of Ca-dependent responses. Biophys J 45:993–999PubMedCrossRefGoogle Scholar
  2. 2.
    Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408PubMedCrossRefGoogle Scholar
  3. 3.
    Alonso MT, Villalobos C, Chamero P, Alvarez J, García-Sancho J (2006) Calcium microdomains in mitochondria and nucleus. Cell Calcium 40:513–525PubMedCrossRefGoogle Scholar
  4. 4.
    Alvarez J, Montero M, García-Sancho J (1999) Subcellular Ca2+ Dynamics. News Physiol Sci 14:161–168PubMedGoogle Scholar
  5. 5.
    Petersen OH (2004) Local and global Ca2+ signals: physiology and pathophysiology. Biol Res 37:661–664PubMedCrossRefGoogle Scholar
  6. 6.
    Rizzuto R, Simpson AW, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358:325–327PubMedCrossRefGoogle Scholar
  7. 7.
    Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224PubMedCrossRefGoogle Scholar
  8. 8.
    Morise H, Shimomura O, Johnson FH, Winant J (1974) Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 13:2656–2662PubMedCrossRefGoogle Scholar
  9. 9.
    Montero M, Brini M, Marsault R, Alvarez J, Sitia R, Pozzan T, Rizzuto R (1995) Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. EMBO J 14:5467–5475PubMedGoogle Scholar
  10. 10.
    Shimomura O, Musicki B, Kishi Y, Inouye S (1993) Light-emitting properties of recombinant semi-synthetic aequorins and recombinant fluorescein-conjugated aequorin for measuring cellular calcium. Cell Calcium 14:373–378PubMedCrossRefGoogle Scholar
  11. 11.
    Montero M, Alonso MT, Carnicero E, Cuchillo-Ibanez I, Albillos A, Garcia AG, Garcia-Sancho J, Alvarez J (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2:57–61PubMedCrossRefGoogle Scholar
  12. 12.
    Villalobos C, Nunez L, Chamero P, Alonso MT, Garcia-Sancho J (2001) Mitochondrial [Ca2+] oscillations driven by local high [Ca2+] domains generated by spontaneous electric activity. J Biol Chem 276:40293–40297PubMedGoogle Scholar
  13. 13.
    Baubet V, Le Mouellic H, Campbell AK, Lucas-Meunier E, Fossier P, Brulet P (2000) Chimeric green fluorescent protein–aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci USA 97:7260–7265PubMedCrossRefGoogle Scholar
  14. 14.
    Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99:7877–7882PubMedCrossRefGoogle Scholar
  15. 15.
    Curie T, Rogers KL, Colasante C, Brulet P (2007) Red-shifted aequorin-based bioluminescent reporters for in vivo imaging of Ca2+ signaling. Mol Imaging 6:30–42PubMedGoogle Scholar
  16. 16.
    Chamero P, Villalobos C, Alonso MT, Garcia-Sancho J (2002). Dampening of cytosolic Ca2+ oscillations on propagation to nucleus. J Biol Chem 277:50226–50229PubMedCrossRefGoogle Scholar
  17. 17.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824PubMedCrossRefGoogle Scholar
  18. 18.
    Alonso MT, Barrero MJ, Carnicero E, Montero M, Garcia-Sancho J, Alvarez J (1998) Functional measurements of [Ca2+] in the endoplasmic reticulum using a herpes virus to deliver targeted aequorin. Cell Calcium 24:87–96PubMedCrossRefGoogle Scholar
  19. 19.
    Badminton MN, Campbell AK, Rembold, CM (1996). Differential regulation of nuclear and cytosolic Ca2+ in HeLa cells. J Biol Chem 271:31210–31214PubMedCrossRefGoogle Scholar
  20. 20.
    Alonso MT, Barrero MJ, Michelena P, Carnicero E, Cuchillo I, Garcia AG, Garcia-Sancho J, Montero M, Alvarez J (1999) Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J Cell Biol 144:241–254PubMedCrossRefGoogle Scholar
  21. 21.
    Rogers KL, Stinnakre J, Agulhon, C Jublot D, Shorte SL, Kremer EJ, Brulet P (2005) Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters. Eur J Neurosci 21:597–610PubMedCrossRefGoogle Scholar
  22. 22.
    Bers DM, Patton CW, Nuccitelli R (1994) A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol 40:3–29PubMedCrossRefGoogle Scholar
  23. 23.
    Villalobos C, Nunez L, Montero M, Garcia AG, Alonso MT, Chamero P, Alvarez J, Garcia-Sancho J (2002) Redistribution of Ca2+ among cytosol and organella during stimulation of bovine chromaffin cells. FASEB J 16:343–353PubMedCrossRefGoogle Scholar
  24. 24.
    Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786PubMedGoogle Scholar
  25. 25.
    Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155PubMedGoogle Scholar
  26. 26.
    Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12PubMedCrossRefGoogle Scholar
  27. 27.
    Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810PubMedCrossRefGoogle Scholar
  28. 28.
    Moore GA, Kass GE, Duddy SK, Farrell GC, Llopis J, Orrenius S (1990) 2,5-Di(tert-butyl)-1,4-benzohydroquinone-a novel mobilizer of the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. Free Radic Res Commun 8:337–345PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Isabel M. Manjarrés
    • 1
  • Pablo Chamero
    • 1
  • Beatriz Domingo
    • 2
  • Francisca Molina
    • 2
  • Juan Llopis
    • 2
  • María Teresa Alonso
    • 1
  • Javier García-Sancho
    • 1
    Email author
  1. 1.Instituto de Biología y Genética Molecular (IBGM)Universidad de Valladolid and Consejo Superior de Investigaciones CientíficasValladolidSpain
  2. 2.Centro Regional de Investigaciones Biomédicas (CRIB) y Facultad de MedicinaUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations