Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 455, Issue 5, pp 859–872 | Cite as

Thrombin increases hyposmotic taurine efflux and accelerates \( {\text{ICI}}^{ - }_{{{\text{swell}}}} \) and RVD in 3T3 fibroblasts by a src-dependent EGFR transactivation

  • E. Vázquez-Juárez
  • G. Ramos-Mandujano
  • R. A. Lezama
  • S. Cruz-Rangel
  • L. D. Islas
  • H. Pasantes-MoralesEmail author
Cell and Molecular Physiology

Abstract

The present study in Swiss3T3 fibroblasts examines the effect of thrombin on hyposmolarity-induced osmolyte fluxes and RVD, and the contribution of the src/EGFR pathway. Thrombin (5 U/ml) added to a 30% hyposmotic medium markedly increased hyposmotic 3H-taurine efflux (285%), accelerated the volume-sensitive Cl current (\( {\text{ICI}}^{ - }_{{{\text{swell}}}} \)) and increased RVD rate. These effects were reduced (50–65%) by preventing the thrombin-induced intracellular Ca2+ [Ca2+]i rise with EGTA-AM, or with the phospholipase C (PLC) blocker U73122. Ca2+calmodulin (CaM) and calmodulin kinase II (CaMKII) also participate in this Ca2+-dependent pathway. Thrombin plus hyposmolarity increased src and EGFR phosphorylation, whose blockade by PP2 and AG1478, decreased by 30–50%, respectively, the thrombin effects on hyposmotic taurine efflux, \( {\text{ICI}}^{ - }_{{{\text{swell}}}} \) and RVD. Ca2+- and src/EGFR-mediated pathways operate independently as shown by (1) the persistence of src and EGFR activation when [Ca2+]i rise is prevented and (2) the additive effect on taurine efflux, \( {\text{ICI}}^{ - }_{{{\text{swell}}}} \) or RVD by simultaneous inhibition of the two pathways, which essentially suppressed these events. PLC–Ca2+- and src/EGFR-signaling pathways operate in the hyposmotic condition and because thrombin per se failed to increase taurine efflux and \( {\text{ICI}}^{ - }_{{{\text{swell}}}} \) under isosmotic condition it seems that it is merely amplifying these previously activated mechanisms. The study shows that thrombin potentiates hyposmolarity-induced osmolyte fluxes and RVD by increasing src/EGFR-dependent signaling, in addition to the Ca2+-dependent pathway.

Keywords

Thrombin Volume regulation Volume Taurine Swelling-activated chloride channel Swelling 

Notes

Acknowledgements

We deeply appreciate the technical assistance of Ms. Claudia Peña Segura. This study was supported in part by grant nos. IN209507 from DGAPA-UNAM and 46465 from CONACYT.

References

  1. 1.
    Barfod ET, Moore AL, Melnick RF, Lidofsky SD (2005) Src regulates distinct pathways for cell volume control through Vav and phospholipase Cγ. J Biol Chem 280:25548–25557PubMedCrossRefGoogle Scholar
  2. 2.
    Bender AS, Neary JT, Norenberg MD (1993) Role of phosphoinositide hydrolysis in astrocyte volume regulation. J Neurochem 61:1506–1514PubMedCrossRefGoogle Scholar
  3. 3.
    Cardin V, Lezama R, Torres-Marquez ME, Pasantes-Morales H (2003) Potentiation of the osmosensitive taurine release and cell volume regulation by cytosolic Ca2+ rise in cultured cerebellar astrocytes. Glia 44:119–128PubMedCrossRefGoogle Scholar
  4. 4.
    Cheema TA, Pettigrew VA, Fisher SK (2007) Receptor regulation of the volume-sensitive efflux of taurine and iodide from human SH-SY5Y neuroblastoma cells: differential requirements for Ca(2+) and protein kinase C. J Pharmacol Exp Ther 320:1068–1077PubMedCrossRefGoogle Scholar
  5. 5.
    Cheema TA, Ward CE, Fisher SK (2005) Subnanomolar concentrations of thrombin enhance the volume-sensitive efflux of taurine from human 1321N1 astrocytoma cells. J Pharmacol Exp Ther 315:755–763PubMedCrossRefGoogle Scholar
  6. 6.
    Cohen DM (2005) SRC family kinases in cell volume regulation. Am J Physiol Cell Physiol 288:C483–C493PubMedCrossRefGoogle Scholar
  7. 7.
    Daub H, Wallasch C, Lankenau A, Herrlich A, Ullrich A (1997) Signal characteristics of G protein-transactivated EGF receptor. EMBO J 16:7032–7044PubMedCrossRefGoogle Scholar
  8. 8.
    Di Ciano-Oliveira C, Thirone AC, Szaszi K, Kapus A (2006) Osmotic stress and the cytoskeleton: the R(h)ole of Rho GTPases. Acta Physiol (Oxf) 187:257–272Google Scholar
  9. 9.
    Franco R, Lezama R, Ordaz B, Pasantes-Morales H (2004) Epidermal growth factor receptor is activated by hyposmolarity and is an early signal modulating osmolyte efflux pathways in Swiss 3T3 fibroblasts. Pflügers Arch Eur J Physiol 447:830–839CrossRefGoogle Scholar
  10. 10.
    Franco R, Rodriguez R, Pasantes-Morales H (2004) Mechanisms of the ATP potentiation of hyposmotic taurine release in Swiss 3T3 fibroblasts. Pflügers Arch Eur J Physiol 449:159–169CrossRefGoogle Scholar
  11. 11.
    Galietta LJ, Falzoni S, Di Virgilio F, Romeo G, Zegarra-Moran O (1997) Characterization of volume-sensitive taurine- and Cl(−)-permeable channels. Am J Physiol 273:C57–C66PubMedGoogle Scholar
  12. 12.
    Hafting T, Haug TM, Ellefsen S, Sand O (2006) Hypotonic stress activates BK channels in clonal kidney cells via purinergic receptors, presumably of the P2Y subtype. Acta Physiol (Oxf) 188:21–31Google Scholar
  13. 13.
    Haussinger D, Reinehr R, Schliess F (2006) The hepatocyte integrin system and cell volume sensing. Acta Physiol (Oxf) 187:249–255Google Scholar
  14. 14.
    Heacock AM, Dodd MS, Fisher SK (2006) Regulation of volume-sensitive osmolyte efflux from human SH-SY5Y neuroblastoma cells following activation of lysophospholipid receptors. J Pharmacol Exp Ther 317:685–693PubMedCrossRefGoogle Scholar
  15. 15.
    Heacock AM, Kerley D, Gurda GT, VanTroostenberghe AT, Fisher SK (2004) Potentiation of the osmosensitive release of taurine and d-aspartate from SH-SY5Y neuroblastoma cells after activation of M3 muscarinic cholinergic receptors. J Pharmacol Exp Ther 311:1097–1104PubMedCrossRefGoogle Scholar
  16. 16.
    Hoffmann EK, Pedersen SF (2006) Sensors and signal transduction pathways in vertebrate cell volume regulation. Contrib Nephrol 152:54–104PubMedCrossRefGoogle Scholar
  17. 17.
    Jakab M, Furst J, Gschwentner M, Botta G, Garavaglia ML, Bazzini C, Rodighiero S, Meyer G, Eichmueller S, Woll E, Chwatal S, Ritter M, Paulmichl M (2002) Mechanisms sensing and modulating signals arising from cell swelling. Cell Physiol Biochem 12:235–258PubMedCrossRefGoogle Scholar
  18. 18.
    Jakab M, Schmidt S, Grundbichler M, Paulmichl M, Hermann A, Weiger T, Ritter M (2006) Hypotonicity and ethanol modulate BK channel activity and chloride currents in GH4/C1 pituitary tumour cells. Acta Physiol (Oxf) 187:51–59Google Scholar
  19. 19.
    Lambert HI (2004) Regulation of the cellular content of the organic osmolyte taurine in mammalian cells. Neurochem Res 29:27–63PubMedCrossRefGoogle Scholar
  20. 20.
    Lepple-Wienhues A, Szabo I, Laun T, Kaba NK, Gulbins E, Lang F (1998) The tyrosine kinase p56lck mediates activation of swelling-induced chloride channels in lymphocytes. J Cell Biol 141:281–286PubMedCrossRefGoogle Scholar
  21. 21.
    Luttrell DK, Luttrell LM (2004) Not so strange bedfellows: G-protein-coupled receptors and Src family kinases. Oncogene 23:7969–7978PubMedCrossRefGoogle Scholar
  22. 22.
    Luttrell LM, Daaka Y, Lefkowitz RJ (1999) Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 11:177–183PubMedCrossRefGoogle Scholar
  23. 23.
    Manolopoulos GV, Prenen J, Droogmans G, Nilius B (1997) Thrombin potentiates volume-activated chloride currents in pulmonary artery endothelial cells. Pflügers Arch Eur J Physiol 433:845–847CrossRefGoogle Scholar
  24. 24.
    McManus M, Fischbarg J, Sun A, Hebert S, Strange K (1993) Laser light-scattering system for studying cell volume regulation and membrane transport processes. Am J Physiol 265:C562–C570PubMedGoogle Scholar
  25. 25.
    Mongin AA, Kimelberg HK (2005) ATP regulates anion channel-mediated organic osmolyte release from cultured rat astrocytes via multiple Ca2+-sensitive mechanisms. Am J Physiol Cell Physiol 288:C204–C213PubMedGoogle Scholar
  26. 26.
    Oliveiro P, Stutzin A (2004) Calcium modulates osmosensitive taurine efflux in HeLa cells. J Neurochem 29:169–176CrossRefGoogle Scholar
  27. 27.
    Pasantes-Morales H, Lezama RA, Ramos-Mandujano G (2006) Tyrosine kinases and osmolyte fluyes during hyposmotic swelling. Acta Physiol 187:93–102CrossRefGoogle Scholar
  28. 28.
    Pasantes-Morales H, Morales-Mulia S (2000) Influence of calcium on regulatory volume decrease: role of potassium channels. Nephron 86:414–427PubMedCrossRefGoogle Scholar
  29. 29.
    Perlman DF, Goldstein L (2004) The anion exchanger as an osmolyte channel in the skate erythrocyte. J Neurochem 29:9–16CrossRefGoogle Scholar
  30. 30.
    Ramos-Mandujano G, Vázquez-Juárez E, Hernández-Benítez R, Pasantes-Morales H (2007) Thrombin potently enhances swelling-sensitive glutamate efflux from cultured astrocytes. Glia 55:917–925PubMedCrossRefGoogle Scholar
  31. 31.
    Thoroed S, Soergaard M, Cragoe E, Fugelli K (1995) The osmolality-sensitive taurine channel in flounder erythrombinocytes is strongly stimulated by noradrenaline under hypo-osmotic conditions. J Exp Biol 198:311–324PubMedGoogle Scholar
  32. 32.
    Tilly BC, Edixhoven MJ, van den Berghe N, Bot AG, de Jonge HR (1994) Ca(2+)-mobilizing hormones potentiate hypotonicity-induced activation of ionic conductances in Intestine 407 cells. Am J Physiol 267:C1271–C1278PubMedGoogle Scholar
  33. 33.
    Tilly BC, van den Berghe N, Tertoolen LG, Edixhoven MJ, de Jonge HR (1993) Protein tyrosine phosphorylation is involved in osmoregulation of ionic conductances. J Biol Chem 268:19919–19922PubMedGoogle Scholar
  34. 34.
    vom Dahl DS, Schliess F, Reissman R, Gorg B, Weiergraber O, Kocalkova M, Dombrovski F, Haussinger D (2003) Involvement of integrins in osmosensing and signalling toward autophagic proteolysis in rat live. J Biol Chem 278:27088–27095CrossRefGoogle Scholar
  35. 35.
    Wehner F, Olsen H, Tinel H, Kinne-Saffran E, Kinne RK (2003) Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Rev Physiol Biochem Pharmacol 148:1–80PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • E. Vázquez-Juárez
    • 1
  • G. Ramos-Mandujano
    • 1
  • R. A. Lezama
    • 3
  • S. Cruz-Rangel
    • 1
  • L. D. Islas
    • 2
  • H. Pasantes-Morales
    • 1
    • 4
    Email author
  1. 1.Departamento de Biofísica, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
  2. 2.Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
  3. 3.Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMéxicoMéxico
  4. 4.Instituto de Fisiología CelularUNAMMéxicoMéxico

Personalised recommendations