Pflügers Archiv - European Journal of Physiology

, Volume 455, Issue 5, pp 775–785 | Cite as

Mechano-sensitivity of ENaC: may the (shear) force be with you

Invited Review

Abstract

The epithelial Na+ channel (ENaC) is the rate-limiting step for Na+ absorption in various vertebrate epithelia and deeply enmeshed in the control of salt and water homeostasis. The phylogenetic relationship of ENaC molecules to mechano-sensitive Degenerins from Caenorhabditis elegans indicates that ENaC might be mechano-sensitive as well. Primarily, it was suggested that ENaC might be activated by membrane stretch. However, this issue still remains to be clarified because controversial results were published. Recent publications indicate that shear stress represents an adequate stimulus, activating ENaC via increasing the single-channel open probability. Basing on the experimental evidence published within the past years and integrating this knowledge into a model related to the mechano-sensitive receptor complex known from C. elegans, we introduce a putative mechanism concerning the mechano-sensitivity of ENaC. We suggest that mechano-sensitive ENaC activation represents a nonhormonal regulatory mechanism. This feature could be of considerable physiological significance because many Na+-absorbing epithelia are exposed to shear forces. Furthermore, it may explain the wide distribution of ENaC proteins in nonepithelial tissues. Nevertheless, it remains a challenge for future studies to explore the mechanism how ENaC is controlled by mechanical forces and shear stress in particular.

Keywords

Epithelial Na+ channel ENaC Mechano-sensitivity Mechano-sensitive channel Degenerins Membrane stretch Shear stress Degenerin/ENaC family 

References

  1. 1.
    Achard JM, Bubien JK, Benos DJ, Warnock DG (1996) Stretch modulates amiloride sensitivity and cation selectivity of sodium channels in human B lymphocytes. Am J Physiol 270:C224–C234PubMedGoogle Scholar
  2. 2.
    Adams DJ, Barakeh J, Laskey R, Van Breemen C (1989) Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J 3:2389–2400PubMedGoogle Scholar
  3. 3.
    Althaus M, Bogdan R, Clauss WG, Fronius M (2007) Mechano-sensitivity of epithelial sodium channels (ENaCs): laminar shear stress increases ion channel open probability. FASEB J 21:2389–2399Google Scholar
  4. 4.
    Amin MS, Wang HW, Reza E, Whitman SC, Tuana BS, Leenen FH (2005) Distribution of epithelial sodium channels and mineralocorticoid receptors in cardiovascular regulatory centers in rat brain. Am J Physiol Regul Integr Comp Physiol 289:R1787–R1797PubMedGoogle Scholar
  5. 5.
    Anantharam A, Palmer LG (2007) Determination of epithelial Na+ channel subunit stoichiometry from single-channel conductances. J Gen Physiol 130(1):55–70Google Scholar
  6. 6.
    Awayda MS, Ismailov II, Berdiev BK, Benos DJ (1995) A cloned renal epithelial Na+ channel protein displays stretch activation in planar lipid bilayers. Am J Physiol 268:C1450–C1459PubMedGoogle Scholar
  7. 7.
    Awayda MS, Subramanyam M (1998) Regulation of the epithelial Na+ channel by membrane tension. J Gen Physiol 112:97–111PubMedCrossRefGoogle Scholar
  8. 8.
    Benos DJ, Awayda MS, Berdiev BK, Bradford AL, Fuller CM, Senyk O, Ismailov II (1996) Diversity and regulation of amiloride-sensitive Na+ channels. Kidney Int 49:1632–1637PubMedCrossRefGoogle Scholar
  9. 9.
    Benos DJ, Stanton BA (1999) Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels. J Physiol 520(Pt 3):631–644PubMedCrossRefGoogle Scholar
  10. 10.
    Bounoutas A, Chalfie M (2007) Touch sensitivity in Caenorhabditis elegans. Pflugers Arch 454(5):691–702Google Scholar
  11. 11.
    Canessa CM, Horisberger JD, Rossier BC (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467–470PubMedCrossRefGoogle Scholar
  12. 12.
    Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467PubMedCrossRefGoogle Scholar
  13. 13.
    Carattino MD, Sheng S, Kleyman TR (2004) Epithelial Na+ channels are activated by laminar shear stress. J Biol Chem 279:4120–4126PubMedCrossRefGoogle Scholar
  14. 14.
    Carattino MD, Sheng S, Kleyman TR (2005) Mutations in the pore region modify epithelial sodium channel gating by shear stress. J Biol Chem 280:4393–4401PubMedCrossRefGoogle Scholar
  15. 15.
    Chalfie M, Au M (1989) Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243:1027–1033PubMedCrossRefGoogle Scholar
  16. 16.
    Chrabi A, Horisberger JD (1999) Stimulation of epithelial sodium channel activity by the sulfonylurea glibenclamide. J Pharmacol Exp Ther 290:341–347PubMedGoogle Scholar
  17. 17.
    Darboux I, Lingueglia E, Champigny G, Coscoy S, Barbry P, Lazdunski M (1998) dGNaC1, a gonad-specific amiloride-sensitive Na+ channel. J Biol Chem 273:9424–9429PubMedCrossRefGoogle Scholar
  18. 18.
    Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75:519–560PubMedGoogle Scholar
  19. 19.
    Driscoll M, Chalfie M (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349:588–593PubMedCrossRefGoogle Scholar
  20. 20.
    Drummond HA, Abboud FM, Welsh MJ (2000) Localization of beta and gamma subunits of ENaC in sensory nerve endings in the rat foot pad. Brain Res 884:1–12PubMedCrossRefGoogle Scholar
  21. 21.
    Drummond HA, Gebremedhin D, Harder DR (2004) Degenerin/epithelial Na+ channel proteins: components of a vascular mechanosensor. Hypertension 44:643–648PubMedCrossRefGoogle Scholar
  22. 22.
    Drummond HA, Price MP, Welsh MJ, Abboud FM (1998) A molecular component of the arterial baroreceptor mechanotransducer. Neuron 21:1435–1441PubMedCrossRefGoogle Scholar
  23. 23.
    Drummond HA, Welsh MJ, Abboud FM (2001) ENaC subunits are molecular components of the arterial baroreceptor complex. Ann N Y Acad Sci 940:42–47PubMedCrossRefGoogle Scholar
  24. 24.
    du Bois-Reymond E (1848) Untersuchungen über Tierische Elektrizität, vol. 1. G. Reimer, BerlinGoogle Scholar
  25. 25.
    Dyka FM, May CA, Enz R (2005) Subunits of the epithelial sodium channel family are differentially expressed in the retina of mice with ocular hypertension. J Neurochem 94:120–128PubMedCrossRefGoogle Scholar
  26. 26.
    Emtage L, Gu G, Hartwieg E, Chalfie M (2004) Extracellular proteins organize the mechanosensory channel complex in C. elegans touch receptor neurons. Neuron 44:795–807PubMedCrossRefGoogle Scholar
  27. 27.
    Eskandari S, Snyder PM, Kreman M, Zampighi GA, Welsh MJ, Wright EM (1999) Number of subunits comprising the epithelial sodium channel. J Biol Chem 274:27281–27286PubMedCrossRefGoogle Scholar
  28. 28.
    Firsov D, Gautschi I, Merillat AM, Rossier BC, Schild L (1998) The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J 17:344–352PubMedCrossRefGoogle Scholar
  29. 29.
    Fronius M, Clauss W, Schnizler M (2003) Stimulation of transepithelial Na(+) current by extracellular Gd(3+) in Xenopus laevis alveolar epithelium. J Membr Biol 195:43–51PubMedCrossRefGoogle Scholar
  30. 30.
    Garty H, Palmer LG (1997) Epithelial sodium channels: function, structure, and regulation. Physiol Rev 77:359–396PubMedGoogle Scholar
  31. 31.
    Giebisch G (1998) Renal potassium transport: mechanisms and regulation. Am J Physiol 274:F817–F833PubMedGoogle Scholar
  32. 32.
    Giraldez T, Afonso-Oramas D, Cruz-Muros I, Garcia-Marin V, Pagel P, Gonzalez-Hernandez T, de la Rosa DA (2007) Cloning and functional expression of a new epithelial sodium channel delta subunit isoform differentially expressed in neurons of the human and monkey telencephalon. J Neurochem 102(4):1304–1315PubMedCrossRefGoogle Scholar
  33. 33.
    Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740PubMedGoogle Scholar
  34. 34.
    Hamill OP, McBride DWJ (1997) Induced membrane hypo/hyper-mechanosensitivity: a limitation of patch-clamp recording. Annu Rev Physiol 59:621–631PubMedCrossRefGoogle Scholar
  35. 35.
    Hummler E, Barker P, Gatzy J, Beermann F, Verdumo C, Schmidt A, Boucher R, Rossier BC (1996) Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet 12:325–328PubMedCrossRefGoogle Scholar
  36. 36.
    Ishibashi K, Marumo F (1998) Molecular cloning of a DEG/ENaC sodium channel cDNA from human testis. Biochem Biophys Res Commun 245:589–593PubMedCrossRefGoogle Scholar
  37. 37.
    Ismailov II, Berdiev BK, Shlyonsky VG, Benos DJ (1997) Mechanosensitivity of an epithelial Na+ channel in planar lipid bilayers: release from Ca2+ block. Biophys J 72:1182–1192PubMedGoogle Scholar
  38. 38.
    Jernigan NL, Drummond HA (2006) Myogenic vasoconstriction in mouse renal interlobar arteries: role of endogenous beta and gammaENaC. Am J Physiol Renal Physiol 291:F1184–F1191PubMedCrossRefGoogle Scholar
  39. 39.
    Ji HL, Fuller CM, Benos DJ (1998) Osmotic pressure regulates alpha beta gamma-rENaC expressed in Xenopus oocytes. Am J Physiol 275:C1182–C1190PubMedGoogle Scholar
  40. 40.
    Ji HL, Su XF, Kedar S, Li J, Barbry P, Smith PR, Matalon S, Benos DJ (2006) Delta-subunit confers novel biophysical features to alpha beta gamma-human epithelial sodium channel (ENaC) via a physical interaction. J Biol Chem 281:8233–8241PubMedCrossRefGoogle Scholar
  41. 41.
    Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735–767PubMedGoogle Scholar
  42. 42.
    Kizer N, Guo XL, Hruska K (1997) Reconstitution of stretch-activated cation channels by expression of the alpha-subunit of the epithelial sodium channel cloned from osteoblasts. Proc Natl Acad Sci U S A 94:1013–1018PubMedCrossRefGoogle Scholar
  43. 43.
    Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308PubMedCrossRefGoogle Scholar
  44. 44.
    Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654PubMedCrossRefGoogle Scholar
  45. 45.
    Lingueglia E, Voilley N, Waldmann R, Lazdunski M, Barbry P (1993) Expression cloning of an epithelial amiloride-sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett 318:95–99PubMedCrossRefGoogle Scholar
  46. 46.
    Ma HP, Li L, Zhou ZH, Eaton DC, Warnock DG (2002) ATP masks stretch activation of epithelial sodium channels in A6 distal nephron cells. Am J Physiol Renal Physiol 282:F501–F505PubMedGoogle Scholar
  47. 47.
    Mall M, Grubb BR, Harkema JR, O’Neal WK, Boucher RC (2004) Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med 10:487–493PubMedCrossRefGoogle Scholar
  48. 48.
    Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117:2449–2460PubMedCrossRefGoogle Scholar
  49. 49.
    Matthay MA, Folkesson HG, Clerici C (2002) Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 82:569–600PubMedGoogle Scholar
  50. 50.
    Mazzochi C, Bubien JK, Smith PR, Benos DJ (2006) The carboxyl terminus of the alpha-subunit of the amiloride-sensitive epithelial sodium channel binds to F-actin. J Biol Chem 281:6528–6538PubMedCrossRefGoogle Scholar
  51. 51.
    Morimoto T, Liu W, Woda C, Carattino MD, Wei Y, Hughey RP, Apodaca G, Satlin LM, Kleyman TR (2006) Mechanism underlying flow stimulation of sodium absorption in the mammalian collecting duct. Am J Physiol Renal Physiol 291:F663–F669PubMedCrossRefGoogle Scholar
  52. 52.
    O’Hagan R, Chalfie M, Goodman MB (2005) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 8:43–50PubMedCrossRefGoogle Scholar
  53. 53.
    Olesen SP, Clapham DE, Davies PF (1988) Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331:168–170PubMedCrossRefGoogle Scholar
  54. 54.
    Palmer LG, Frindt G (1986) Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proc Natl Acad Sci U S A 83:2767–2770PubMedCrossRefGoogle Scholar
  55. 55.
    Palmer LG, Frindt G (1996) Gating of Na channels in the rat cortical collecting tubule: effects of voltage and membrane stretch. J Gen Physiol 107:35–45PubMedCrossRefGoogle Scholar
  56. 56.
    Palmer LG, Sackin H, Frindt G (1998) Regulation of Na+ channels by luminal Na+ in rat cortical collecting tubule. J Physiol 509:151–162PubMedCrossRefGoogle Scholar
  57. 57.
    Puoti A, May A, Canessa CM, Horisberger JD, Schild L, Rossier BC (1995) The highly selective low-conductance epithelial Na channel of Xenopus laevis A6 kidney cells. Am J Physiol 269:C188–C197PubMedGoogle Scholar
  58. 58.
    Rossier BC (1998) Mechanosensitivity of the epithelial sodium channel (ENaC): controversy or pseudocontroversy. J Gen Physiol 112:95–96PubMedCrossRefGoogle Scholar
  59. 59.
    Rossier BC (2002) Hormonal regulation of the epithelial sodium channel ENaC: N or P(o). J Gen Physiol 120:67–70PubMedCrossRefGoogle Scholar
  60. 60.
    Rossier BC (2004) The epithelial sodium channel: activation by membrane-bound serine proteases. Proc Am Thorac Soc 1:4–9PubMedCrossRefGoogle Scholar
  61. 61.
    Rossier BC, Pradervand S, Schild L, Hummler E (2002) Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu Rev Physiol 64:877–897PubMedCrossRefGoogle Scholar
  62. 62.
    Satlin LM, Carattino MD, Liu W, Kleyman TR (2006) Regulation of cation transport in the distal nephron by mechanical forces. Am J Physiol Renal Physiol 291:F923–F931PubMedCrossRefGoogle Scholar
  63. 63.
    Satlin LM, Sheng S, Woda CB, Kleyman TR (2001) Epithelial Na(+) channels are regulated by flow. Am J Physiol Renal Physiol 280:F1010–F1018PubMedGoogle Scholar
  64. 64.
    Schnizler M, Berk A, Clauss W (2003) Sensitivity of oocyte-expressed epithelial Na+ channel to glibenclamide. Biochim Biophys Acta 1609:170–176PubMedCrossRefGoogle Scholar
  65. 65.
    Sheng S, Perry CJ, Kleyman TR (2004) Extracellular Zn2+ activates epithelial Na+ channels by eliminating Na+ self-inhibition. J Biol Chem 279:31687–31696PubMedCrossRefGoogle Scholar
  66. 66.
    Smith PR, Saccomani G, Joe EH, Angelides KJ, Benos DJ (1991) Amiloride-sensitive sodium channel is linked to the cytoskeleton in renal epithelial cells. Proc Natl Acad Sci U S A 88:6971–6975PubMedCrossRefGoogle Scholar
  67. 67.
    Snyder PM, Cheng C, Prince LS, Rogers JC, Welsh MJ (1998) Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J Biol Chem 273:681–684PubMedCrossRefGoogle Scholar
  68. 68.
    Snyder PM, Price MP, McDonald FJ, Adams CM, Volk KA, Zeiher BG, Stokes JB, Welsh MJ (1995) Mechanism by which Liddle’s syndrome mutations increase activity of a human epithelial Na+ channel. Cell 83:969–978PubMedCrossRefGoogle Scholar
  69. 69.
    Tarran R, Button B, Boucher RC (2006) Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu Rev Physiol 68:543–561PubMedCrossRefGoogle Scholar
  70. 70.
    Tarran R, Button B, Picher M, Paradiso AM, Ribeiro CM, Lazarowski ER, Zhang L, Collins PL, Pickles RJ, Fredberg JJ, Boucher RC (2005) Normal and cystic fibrosis airway surface liquid homeostasis. The effects of phasic shear stress and viral infections. J Biol Chem 280:35751–35759PubMedCrossRefGoogle Scholar
  71. 71.
    Tavernarakis N, Driscoll M (2000) Caenorhabditis elegans degenerins and vertebrate ENaC ion channels contain an extracellular domain related to venom neurotoxins. J Neurogenet 13:257–264PubMedGoogle Scholar
  72. 72.
    Tavernarakis N, Driscoll M (2001) Degenerins. At the core of the metazoan mechanotransducer? Ann N Y Acad Sci 940:28–41PubMedCrossRefGoogle Scholar
  73. 73.
    Trujillo E, Alvarez de la Rosa D, Mobasheri A, Gonzalez T, Canessa CM, Martin-Vasallo P (1999) Sodium transport systems in human chondrocytes. II. Expression of ENaC, Na+/K+/2Cl cotransporter and Na+/H+ exchangers in healthy and arthritic chondrocytes. Histol Histopathol 14:1023–1031PubMedGoogle Scholar
  74. 74.
    Turnheim K (1991) Intrinsic regulation of apical sodium entry in epithelia. Physiol Rev 71:429–445PubMedGoogle Scholar
  75. 75.
    Ussing HH (1960) The frog skin potential. J Gen Physiol 43:135–147PubMedCrossRefGoogle Scholar
  76. 76.
    Waldmann R, Champigny G, Bassilana F, Voilley N, Lazdunski M (1995) Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel. J Biol Chem 270:27411–27414PubMedCrossRefGoogle Scholar
  77. 77.
    Wan X, Juranka P, Morris CE (1999) Activation of mechanosensitive currents in traumatized membrane. Am J Physiol 276:C318–C327PubMedGoogle Scholar
  78. 78.
    Wang EC, Lee JM, Johnson JP, Kleyman TR, Bridges R, Apodaca G (2003) Hydrostatic pressure-regulated ion transport in bladder uroepithelium. Am J Physiol Renal Physiol 285:F651–F663PubMedGoogle Scholar
  79. 79.
    Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC (2003) Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci U S A 100:7988–7995PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Animal PhysiologyJustus-Liebig-University GiessenGiessenGermany

Personalised recommendations