Skip to main content

Advertisement

Log in

Regulation of the epithelial sodium channel by phosphatidylinositides: experiments, implications, and speculations

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Recent studies suggest that the activity of epithelial sodium channels (ENaC) is increased by phosphatidylinositides, especially phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). Stimulation of phospholipase C by either adenosine triphosphate (ATP)-activation of purinergic P2Y receptors or epidermal growth factor (EGF)-activation of EGF receptors reduces membrane PI(4,5)P2, and consequently decreases ENaC activity. Since ATP and EGF may be trapped in cysts formed by the distal tubule, it is possible that ENaC inhibition induced by ATP and EGF facilitates cyst formation in polycystic kidney diseases (PKD). However, some results suggest that ENaC activity is increased in PKD. In contrast to P2Y and EGF receptors, stimulation of insulin-like growth factor-1 (IGF-1) receptor by aldosterone or insulin produces PI(3,4,5)P3, and consequently increases ENaC activity. The acute effect of aldosterone on ENaC activity through PI(3,4,5)P3 possibly accounts for the initial feedback for blood volume recovery after hypovolemic hypotension. PI(4,5)P2 and PI(3,4,5)P3, respectively, interacts with the N terminus of β-ENaC and the C terminus of γ-ENaC. However, whether ENaC selectively binds to PI(4,5)P2 and PI(3,4,5)P3 over other anionic phospholipids remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson D, Koch CA, Grey L, Ellis C, Moran MF, Pawson T (1990) Binding of SH2 domains of phospholipase C γ 1, GAP, and Src to activated growth factor receptors. Science 250:979–982

    Article  PubMed  CAS  Google Scholar 

  2. Ashcroft FM (1998) Exciting times for PIP2. Science 282:1059

    Article  PubMed  CAS  Google Scholar 

  3. Ausiello DA, Stow JL, Cantiello HF, de Almeida JB, Benos DJ (1992) Purified epithelial Na+ channel complex contains the pertussis toxin-sensitive Gai-α protein. J Biol Chem 267:4759–4765

    PubMed  CAS  Google Scholar 

  4. Awayda MS (2000) Specific and nonspecific effects of protein kinase C on the epithelial Na+ channel. J Gen Physiol 115:559–570

    Article  PubMed  CAS  Google Scholar 

  5. Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP, Fakler B (1998) PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282:1141–1144

    Article  PubMed  CAS  Google Scholar 

  6. Berdiev BK, Latorre R, Benos DJ, Ismailov I (2001) Actin modifies Ca2+ block of epithelial Na+ channels in planar lipid bilayers. Biophys J 80:2176–2186

    PubMed  CAS  Google Scholar 

  7. Blazer-Yost BL, Cox M (1988) Insulin-like growth factor 1 stimulates renal epithelial Na+ transport. Am J Physiol 255:C413–C417

    PubMed  CAS  Google Scholar 

  8. Blazer-Yost BL, Paunescu TG, Helman SI, Lee KD, Vlahos CJ (1999) Phosphoinositide 3-kinase is required for aldosterone-regulated sodium reabsorption. Am J Physiol 277:C531–C536

    PubMed  CAS  Google Scholar 

  9. Blazer-Yost BL, Vahle JC, Byars JM, Bacallao RL (2004) Real-time three-dimensional imaging of lipid signal transduction: apical membrane insertion of epithelial Na+ channels. Am J Physiol 287:C1569–C1576

    Article  CAS  Google Scholar 

  10. Boudreault F, Grygorczyk R (2002) Cell swelling-induced ATP release and gadolinium-sensitive channels. Am J Physiol 282:C219–C226

    CAS  Google Scholar 

  11. Boudreault F, Grygorczyk R (2004) Cell swelling-induced ATP release is tightly dependent on intracellular calcium elevations. J Physiol 561:499–513

    Article  PubMed  CAS  Google Scholar 

  12. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits [see comments]. Nature 367:463–467

    Article  PubMed  CAS  Google Scholar 

  13. Chalfant ML, Denton JS, Langloh AL, Karlson KH, Loffing J, Benos DJ, Stanton BA (1999) The NH2 terminus of the epithelial sodium channel contains an endocytic motif. J Biol Chem 274:32889–32896

    Article  PubMed  CAS  Google Scholar 

  14. Chattopadhyay A, Vecchi M, Ji Q, Mernaugh R, Carpenter G (1999) The role of individual SH2 domains in mediating association of phospholipase C-γ1 with the activated EGF receptor. J Biol Chem 274:26091–26097

    Article  PubMed  CAS  Google Scholar 

  15. Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J, Kahn CR (1994) Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol 14:4902–4911

    PubMed  CAS  Google Scholar 

  16. Ding Z, Tuluc F, Bandivadekar KR, Zhang L, Jin J, Kunapuli SP (2005) Arg333 and Arg334 in the COOH terminus of the human P2Y1 receptor are crucial for Gq coupling. Am J Physiol 288:C559–C567

    Article  CAS  Google Scholar 

  17. Du J, Wilson PD (1995) Abnormal polarization of EGF receptors and autocrine stimulation of cyst epithelial growth in human ADPKD. Am J Physiol 269:C487–C495

    PubMed  CAS  Google Scholar 

  18. Eaton DC, Malik B, Saxena NC, Al-Khalili OK, Yue G (2001) Mechanisms of aldosterone’s action on epithelial Na+ transport. J Membr Biol 184:313–319

    Article  PubMed  CAS  Google Scholar 

  19. Firestein BL, Xing M, Hughes RJ, Corvera CU, Insel PA (1996) Heterogeneity of P2u- and P2y-purinergic receptor regulation of phospholipases in MDCK cells. Am J Physiol 271:F610–F618

    PubMed  CAS  Google Scholar 

  20. Firsov D, Schild L, Gautschi I, Merillat AM, Schneeberger E, Rossier BC (1996) Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci USA 93:15370–15375

    Article  PubMed  CAS  Google Scholar 

  21. Frindt G, Palmer LG, Windhager EE (1996) Feedback regulation of Na channels in rat CCT. IV. Mediation by activation of protein kinase C. Am J Physiol 270:F371–F376

    PubMed  CAS  Google Scholar 

  22. Grantham JJ, Geiser JL, Evan AP (1987) Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int 31:1145–1152

    Article  PubMed  CAS  Google Scholar 

  23. Guan Y, Zhang Y, Breyer RM, Fowler B, Davis L, Hebert RL, Breyer MD (1998) Prostaglandin E2 inhibits renal collecting duct Na+ absorption by activating the EP1 receptor. J Clin Invest 102:194–201

    PubMed  CAS  Google Scholar 

  24. Hanwell D, Ishikawa T, Saleki R, Rotin D (2002) Trafficking and cell surface stability of the epithelial Na+ channel expressed in epithelial Madin-Darby canine kidney cells. J Biol Chem 277:9772–9779

    Article  PubMed  CAS  Google Scholar 

  25. Haruta T, Morris AJ, Rose DW, Nelson JG, Mueckler M, Olefsky JM (1995) Insulin-stimulated GLUT4 translocation is mediated by a divergent intracellular signaling pathway. J Biol Chem 270:27991–27994

    Article  PubMed  CAS  Google Scholar 

  26. Hazama A, Shimizu T, ndo-Akatsuka Y, Hayashi S, Tanaka S, Maeno E, Okada Y (1999) Swelling-induced, CFTR-independent ATP release from a human epithelial cell line: lack of correlation with volume-sensitive Cl- channels. J Gen Physiol 114:525–533

    Article  PubMed  CAS  Google Scholar 

  27. Helms MN, Liu L, Liang YY, Al-Khalili O, Vandewalle A, Saxena S, Eaton DC, Ma HP (2005) Phosphatidylinositol 3,4,5-trisphosphate mediates aldosterone stimulation of epithelial sodium channel (ENaC) and interacts with γ-ENaC. J Biol Chem 280:40885–40891

    Article  PubMed  CAS  Google Scholar 

  28. Henderson RM, Edwardson JM, Geisse NA, Saslowsky DE (2004) Lipid rafts: feeling is believing. New Physiol Sci 19:39–43

    CAS  Google Scholar 

  29. Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ, Meyer T (2006) PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314:1458–1461

    Article  PubMed  CAS  Google Scholar 

  30. Hilgemann DW, Ball R (1996) Regulation of cardiac Na+,Ca2+-exchange and KATP potassium channels by PIP2. Science 273:956–959

    Article  PubMed  CAS  Google Scholar 

  31. Hill WG, An B, Johnson JP (2002) Endogenously expressed epithelial sodium channel is present in lipid rafts in A6 cells. J Biol Chem 277:33541–33544

    Article  PubMed  CAS  Google Scholar 

  32. Holzman J, Liu L, Duke BJ, Kemendy A, Eaton DC (2006) Transactivation of the IGF-1R by aldosterone. Am J Physiol 292:F1219–1228

    Google Scholar 

  33. Huang S, Lifshitz L, Patki-Kamath V, Tuft R, Fogarty K, Czech MP (2004) Phosphatidylinositol-4,5-bisphosphate-rich plasma membrane patches organize active zones of endocytosis and ruffling in cultured adipocytes. Mol Cell Biol 24:9102–9123

    Article  PubMed  CAS  Google Scholar 

  34. Insel PA, Ostrom RS, Zambon AC, Hughes RJ, Balboa MA, Shehnaz D, Gregorian C, Torres B, Firestein BL, Xing M, Post SR (2001) P2Y receptors of MDCK cells: epithelial cell regulation by extracellular nucleotides. Clin Exp Pharmacol Physiol 28:351–354

    Article  PubMed  CAS  Google Scholar 

  35. Kalvodova L, Kahya N, Schwille P, Ehehalt R, Verkade P, Drechsel D, Simons K (2005) Lipids as modulators of proteolytic activity of BACE: involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro. J Biol Chem 280:36815–36823

    Article  PubMed  CAS  Google Scholar 

  36. Kavran JM, Klein DE, Lee A, Falasca M, Isakoff SJ, Skolnik EY, Lemmon MA (1998) Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem 273:30497–30508

    Article  PubMed  CAS  Google Scholar 

  37. Kern S, Zimmerhackl LB, Hildebrandt F, Ermisch-Omran B, Uhl M (2000) Appearance of autosomal recessive polycystic kidney disease in magnetic resonance imaging and RARE-MR-urography. Pediatr Radiol 30:156–160

    Article  PubMed  CAS  Google Scholar 

  38. Kishore BK, Ginns SM, Krane CM, Nielsen S, Knepper MA (2000) Cellular localization of P2Y2 purinoceptor in rat renal inner medulla and lung. Am J Physiol 278:F43–F51

    CAS  Google Scholar 

  39. Klarlund JK, Rameh LE, Cantley LC, Buxton JM, Holik JJ, Sakelis C, Patki V, Corvera S, Czech MP (1998) Regulation of GRP1-catalyzed ADP ribosylation factor guanine nucleotide exchange by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:1859–1862

    Article  PubMed  CAS  Google Scholar 

  40. Klarlund JK, Tsiaras W, Holik JJ, Chawla A, Czech MP (2000) Distinct polyphosphoinositide binding selectivities for pleckstrin homology domains of GRP1-like proteins based on diglycine versus triglycine motifs. J Biol Chem 275:32816–36821

    Article  PubMed  CAS  Google Scholar 

  41. Kunzelmann K, Bachhuber T, Regeer R, Markovich D, Sun J, Schreiber R (2005) Purinergic inhibition of the epithelial Na+ transport via hydrolysis of PIP2. FASEB J 19:142–143

    PubMed  CAS  Google Scholar 

  42. Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P (2000) Gap43, marcks, and cap23 modulate PI(4,5)P2 at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol 149:1455–1472

    Article  PubMed  CAS  Google Scholar 

  43. Le T, Liang Z, Patel H, Yu MH, Sivasubramaniam G, Slovitt M, Tanentzapf G, Mohanty N, Paul SM, Wu VM, Beitel GJ (2006) A new family of Drosophila balancer chromosomes with a w- dfd-GMR yellow fluorescent protein marker. Genetics 174:2255–2257

    PubMed  CAS  Google Scholar 

  44. Lebowitz J, An B, Edinger RS, Zeidel ML, Johnson JP (2003) Effect of altered Na+ entry on expression of apical and basolateral transport proteins in A6 epithelia. Am J Physiol 285:F524–F531

    Google Scholar 

  45. Lehrmann H, Thomas J, Kim SJ, Jacobi C, Leipziger J (2002) Luminal P2Y2 receptor-mediated inhibition of Na+ absorption in isolated perfused mouse CCD. J Am Soc Nephrol 11:1798–1806

    Google Scholar 

  46. Lemmon MA, Ferguson KM (2001) Molecular determinants in pleckstrin homology domains that allow specific recognition of phosphoinositides. Biochem Soc Trans 29:377–384

    Article  PubMed  CAS  Google Scholar 

  47. Lemmon MA, Ferguson KM, O’Brien R, Sigler PB, Schlessinger J (1995) Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci USA 92:10472–10476

    Article  PubMed  CAS  Google Scholar 

  48. Ling BN, Eaton DC (1989) Effects of luminal Na+ on single Na+ channels in A6 cells, a regulatory role for protein kinase C. Am J Physiol 256:F1094–F1103

    PubMed  CAS  Google Scholar 

  49. Ling BN, Kokko KE, Eaton DC (1992) Inhibition of apical Na+ channels in rabbit cortical collecting tubules by basolateral prostaglandin E2 is modulated by protein kinase C. J Clin Invest 90:1328–1334

    PubMed  CAS  Google Scholar 

  50. Ma H, Ling BN (1996) Luminal adenosine receptors regulate amiloride-sensitive Na channels in A6 distal nephron cells. Am J Physiol 270:F798–F805

    PubMed  CAS  Google Scholar 

  51. Ma HP, Eaton DC (2005) Acute regulation of epithelial sodium channel by anionic phospholipids. J Am Soc Nephrol 16:3182–3187

    Article  PubMed  CAS  Google Scholar 

  52. Ma HP, Li L, Zhou ZH, Eaton DC, Warnock DG (2002) ATP masks stretch-activation of epithelial sodium channels in A6 distal nephron cells. Am J Physiol 282:F501–F505

    CAS  Google Scholar 

  53. Ma HP, Saxena S, Warnock DG (2002) Anionic phospholipids regulate native and expressed ENaC. J Biol Chem 277:7641–7644

    Article  PubMed  CAS  Google Scholar 

  54. MacRae DK, Nemo R, Sweeney WE Jr, Avner ED (2004) EGF-related growth factors in the pathogenesis of murine ARPKD. Kidney Int 65:2018–2029

    Article  Google Scholar 

  55. Mall M, Grubb BR, Harkema JR, O’Neal WK, Boucher RC (2004) Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med 10:487–493

    Article  PubMed  CAS  Google Scholar 

  56. Mareninova O, Shin JM, Vagin O, Turdikulova S, Hallen S, Sachs G (2005) Topography of the membrane domain of the liver Na+-dependent bile acid transporter. Biochemistry (Mosc) 44:13702–13712

    Article  CAS  Google Scholar 

  57. McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:605–611

    Article  PubMed  CAS  Google Scholar 

  58. Meisenhelder J, Suh PG, Rhee SG, Hunter T (1989) Phospholipase C-γ is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell 57:1109–1122

    Article  PubMed  CAS  Google Scholar 

  59. Menezes LF, Onuchic LF (2006) Molecular and cellular pathogenesis of autosomal recessive polycystic kidney disease. Braz J Med Biol Res 39:1537–1548

    Article  PubMed  CAS  Google Scholar 

  60. Munemura C, Uemasu J, Kawasaki H (1994) Epidermal growth factor and endothelin in cyst fluid from autosomal dominant polycystic kidney disease cases: possible evidence of heterogeneity in cystogenesis. Am J Kidney Dis 24:561–568

    PubMed  CAS  Google Scholar 

  61. Murthy KS, Makhlouf GM (1998) Coexpression of ligand-gated P2X and G protein-coupled P2Y receptors in smooth muscle. Preferential activation of P2Y receptors coupled to phospholipase C (PLC)-b1 via Gαq/11 and to PLC-β3 via Gβγi3. J Biol Chem 273:4695–4704

    Article  PubMed  CAS  Google Scholar 

  62. Myerburg MM, Butterworth MB, McKenna EE, Peters KW, Frizzell RA, Kleyman TR, Pilewski JM (2006) Airway surface liquid volume regulates ENaC by altering the serine protease-protease inhibitor balance: a mechanism for sodium hyperabsorption in cystic fibrosis. J Biol Chem 281:27942–27949

    Article  PubMed  CAS  Google Scholar 

  63. Nishibe S, Wahl MI, Hernandez-Sotomayor SM, Tonks NK, Rhee SG, Carpenter G (1990) Increase of the catalytic activity of phospholipase C-γ 1 by tyrosine phosphorylation. Science 250:1253–1256

    Article  PubMed  CAS  Google Scholar 

  64. Olteanu D, Yoder BK, Liu W, Croyle MJ, Welty EA, Rosborough K, Wyss JM, Bell PD, Guay-Woodford LM, Bevensee MO, Satlin LM, Schwiebert EM (2006) Heightened epithelial Na+ channel-mediated Na+ absorption in a murine polycystic kidney disease model epithelium lacking apical monocilia. Am J Physiol 290:C952–C963

    Article  CAS  Google Scholar 

  65. Pao AC, McCormick JA, Li H, Siu J, Govaerts C, Bhalla V, Soundararajan R, Pearce D (2007) The N-terminus of serum and glucocorticoid regulated kinase 1 binds to phosphoinositides and is essential for isoform-specific physiologic functions. Am J Physiol 292: F1741–F1750

    CAS  Google Scholar 

  66. Paunescu TG, Blazer-Yost BL, Vlahos CJ, Helman SI (2000) LY-294002-inhibitable PI 3-kinase and regulation of baseline rates of Na+ transport in A6 epithelia. Am J Physiol 279:236–247

    Google Scholar 

  67. Peti-Peterdi J, Warnock DG, Bell PD (2002) Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT1 receptors. J Am Soc Nephrol 13:1131–1135

    Article  PubMed  CAS  Google Scholar 

  68. Pochynyuk O, Medina J, Gamper N, Genth H, Stockand JD, Staruschenko A (2006) Rapid translocation and insertion of the epithelial Na+ channel in response to RhoA signaling. J Biol Chem 281:26520–26527

    Article  PubMed  CAS  Google Scholar 

  69. Pochynyuk O, Staruschenko A, Tong Q, Medina J, Stockand JD (2005) Identification of a functional phosphatidylinositol 3,4,5-trisphosphate binding site in the epithelial Na+ channel. J Biol Chem 280:37565–37571

    Article  PubMed  CAS  Google Scholar 

  70. Pochynyuk O, Tong Q, Staruschenko A, Ma HP, Stockand JD (2006) Regulation of the epithelial Na+ channel (ENaC) by phosphatidylinositides. Am J Physiol 290:F949–F957

    CAS  Google Scholar 

  71. Rajendran L, Simons K (2005) Lipid rafts and membrane dynamics. J Cell Sci 118:1099–1102

    Article  PubMed  CAS  Google Scholar 

  72. Record RD, Froelich LL, Vlahos CJ, Blazer-Yost BL (1998) Phosphatidylinositol 3-kinase activation is required for insulin-stimulated sodium transport in A6 cells. Am J Physiol 274:E611–E617

    PubMed  CAS  Google Scholar 

  73. Rohacs T, Chen J, Prestwich GD, Logothetis DE (1999) Distinct specificities of inwardly rectifying K+ channels for phosphoinositides. J Biol Chem 274:36065–36072

    Article  PubMed  CAS  Google Scholar 

  74. Rokaw MD, Sarac E, Lechman E, West M, Angeski J, Johnson JP, Zeidel ML (1996) Chronic regulation of transepithelial Na+ transport by the rate of apical Na+ entry. Am J Physiol 270:C600–C607

    PubMed  CAS  Google Scholar 

  75. Schafer JA (2002) Abnormal regulation of ENaC: syndromes of salt retention and salt wasting by the collecting duct. Am J Physiol 283:F221–F235

    CAS  Google Scholar 

  76. Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K (2003) Resistance of cell membranes to different detergents. Proc Natl Acad Sci USA 100:5795–5800

    Article  PubMed  CAS  Google Scholar 

  77. Schwiebert EM, Wallace DP, Braunstein GM, King SR, Peti-Peterdi J, Hanaoka K, Guggino WB, Guay-Woodford LM, Bell PD, Sullivan LP, Grantham JJ, Taylor AL (2002) Autocrine extracellular purinergic signaling in epithelial cells derived from polycystic kidneys. Am J Physiol 282:F763–F775

    CAS  Google Scholar 

  78. Shen JP, Cotton CU (2003) Epidermal growth factor inhibits amiloride-sensitive sodium absorption in renal collecting duct cells. Am J Physiol 284:F57–F64

    CAS  Google Scholar 

  79. Shyng SL, Nichols CG (1998) Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282:1138–1141

    Article  PubMed  CAS  Google Scholar 

  80. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  81. Staruschenko A, Patel P, Tong Q, Medina JL, Stockand JD (2004) Ras activates the epithelial Na+ channel through phosphoinositide 3-OH kinase signaling. J Biol Chem 279:37771–37778

    Article  PubMed  CAS  Google Scholar 

  82. Stockand JD, Spier BJ, Worrell RT, Yue G, Al Baldawi N, Eaton DC (1999) Regulation of Na+ reabsorption by the aldosterone-induced small G protein K-Ras2A. J Biol Chem 274:35449–35454

    Article  PubMed  CAS  Google Scholar 

  83. Sugi K, Musch MW, Field M, Chang EB (2001) Inhibition of Na+,K+-ATPase by interferon γ down-regulates intestinal epithelial transport and barrier function. Gastroenterology 120:1393–1403

    Article  PubMed  CAS  Google Scholar 

  84. Sweeney WE Jr, Avner ED (2006) Molecular and cellular pathophysiology of autosomal recessive polycystic kidney disease (ARPKD). Cell Tissue Res 326:671–685

    Article  PubMed  CAS  Google Scholar 

  85. Sweeney WE Jr, Hamahira K, Sweeney J, Garcia-Gatrell M, Frost P, Avner ED (2003) Combination treatment of PKD utilizing dual inhibition of EGF-receptor activity and ligand bioavailability. Kidney Int 64:1310–1319

    Article  PubMed  CAS  Google Scholar 

  86. Tamura H, Schild L, Enomoto N, Matsui N, Marumo F, Rossier BC (1996) Liddle disease caused by a missense mutation of beta subunit of the epithelial sodium channel gene. J Clin Invest 97:1780–1784

    Article  PubMed  CAS  Google Scholar 

  87. Tong Q, Gamper N, Medina JL, Shapiro MS, Stockand JD (2004) Direct activation of the epithelial Na+ channel by phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate produced by phosphoinositide 3-OH kinase. J Biol Chem 279:22654–22663

    Article  PubMed  CAS  Google Scholar 

  88. Tong Q, Stockand JD (2005) Receptor tyrosine kinases mediate epithelial Na+ channel inhibition by epidermal growth factor. Am J Physiol 288:F150–F161

    CAS  Google Scholar 

  89. Torres VE, Sweeney WE Jr, Wang X, Qian Q, Harris PC, Frost P, Avner ED (2003) EGF receptor tyrosine kinase inhibition attenuates the development of PKD in Han:SPRD rats. Kidney Int 64:1573–1579

    Article  PubMed  CAS  Google Scholar 

  90. Turnheim K (1994) Epithelial sodium transport: basic autoregulatory mechanisms. Physiol Res 43:211–218

    PubMed  CAS  Google Scholar 

  91. Vega QC, Cochet C, Filhol O, Chang CP, Rhee SG, Gill GN (1992) A site of tyrosine phosphorylation in the C terminus of the epidermal growth factor receptor is required to activate phospholipase C. Mol Cell Biol 12:128–135

    PubMed  CAS  Google Scholar 

  92. Veizis EI, Carlin CR, Cotton CU (2004) Decreased amiloride-sensitive Na+ absorption in collecting duct principal cells isolated from BPK ARPKD mice. Am J Physiol 286:F244–F254

    Article  CAS  Google Scholar 

  93. Veizis IE, Cotton CU (2005) Abnormal EGF-dependent regulation of sodium absorption in ARPKD collecting duct cells. Am J Physiol 288:F474–F482

    CAS  Google Scholar 

  94. Virbasius JV, Song X, Pomerleau DP, Zhan Y, Zhou GW, Czech MP (2001) Activation of the Akt-related cytokine-independent survival kinase requires interaction of its phox domain with endosomal phosphatidylinositol 3-phosphate. Proc Natl Acad Sci USA 98:12908–12913

    Article  PubMed  CAS  Google Scholar 

  95. Wang Y, Roman R, Lidofsky SD, Fitz JG (1996) Autocrine signaling through ATP release represents a novel mechanism for cell volume regulation. Proc Natl Acad Sci USA 93:12020–12025

    Article  PubMed  CAS  Google Scholar 

  96. Warnock DG (2001) Liddle syndrome: genetics and mechanisms of Na+ channel defects. Am J Med Sci 322:302–307

    Article  PubMed  CAS  Google Scholar 

  97. Wilson PD, Hovater JS, Casey CC, Fortenberry JA, Schwiebert EM (1999) ATP release mechanisms in primary cultures of epithelia derived from the cysts of polycystic kidneys. J Am Soc Nephrol 10:218–229

    PubMed  CAS  Google Scholar 

  98. Yue G, Edinger RS, Bao HF, Johnson JP, Eaton DC (2000) The effect of rapamycin on single ENaC channel activity and phosphorylation in A6 cells. Am J Physiol 279:C81–C88

    CAS  Google Scholar 

  99. Yue G, Malik B, Yue G, Eaton DC (2002) Phosphatidylinositol 4, 5-bisphosphate (PIP2) stimulates sodium channel activity in A6 cells. J Biol Chem 277:11965–11969

    Article  PubMed  CAS  Google Scholar 

  100. Zeng WZ, Li XJ, Hilgemann DW, Huang CL (2003) Protein kinase C inhibits ROMK1 channel activity via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. J Biol Chem 278:16852–16856

    Article  PubMed  CAS  Google Scholar 

  101. Zhang L, Lee JK, John SA, Uozumi N, Kodama I (2004) Mechanosensitivity of GIRK channels is mediated by protein kinase C-dependent channel-phosphatidylinositol 4,5-bisphosphate interaction. J Biol Chem 279:7037–7047

    Article  PubMed  CAS  Google Scholar 

  102. Zhu G, Decker SJ, Saltiel AR (1992) Direct analysis of the binding of Src-homology 2 domains of phospholipase C to the activated epidermal growth factor receptor. Proc Natl Acad Sci USA 89:9559–9563

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

H.-P.M. was supported by DHHS, National Institutes of Health (NIH) Grant R01-DK067110 and D.C.E by NIH Grant R37-DK37963, P30-DK064399, and P01-DK61521.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Ping Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, HP., Chou, CF., Wei, SP. et al. Regulation of the epithelial sodium channel by phosphatidylinositides: experiments, implications, and speculations. Pflugers Arch - Eur J Physiol 455, 169–180 (2007). https://doi.org/10.1007/s00424-007-0294-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0294-3

Keywords

Navigation