Skip to main content

Advertisement

Log in

Impaired coronary function in Wistar Ottawa Karlsburg W rats—a new model of the metabolic syndrome

  • Integrative Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The metabolic syndrome is associated with an increased risk for coronary heart disease. The underlying mechanisms are not well understood. The present study was designed to investigate coronary function in Wistar Ottawa Karlsburg W (WOKW) rats, a new animal model of the metabolic syndrome. The responses of coronary artery segments from WOKW and Dark Agouti (DA) control rats of different ages to several physiological vasoconstrictors and vasodilators were measured in a small vessel wire myograph, and potential mechanisms involved in the differential responses between the two strains were investigated. WOKW showed increased α1-adrenoceptor-mediated coronary constriction at 3 and 10 months of age, as well as seriously blunted β-adrenoceptor-mediated coronary relaxation at 16 months of age. Responses to non-adrenergic agonists were not altered in WOKW compared to DA. The α1-adrenoceptor-mediated coronary constriction in WOKW was completely blocked by rho-kinase inhibition. Induced hyperinsulinemia did not cause increased α1-adrenoceptor-mediated coronary constriction or impaired β-adrenoceptor-mediated coronary relaxation in DA. The association between blunted coronary β-adrenoceptor responsiveness and the metabolic syndrome was confirmed in Zucker diabetic fatty rats. We conclude that the metabolic syndrome in WOKW rats is associated with impaired coronary function due to altered adrenoceptor sensitivity. The latter may contribute to inappropriately elevated coronary tone in insulin-resistant subjects, especially when sympathetic activity to the heart is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bachorik PS, Ross JW (1995) National cholesterol education program recommendations for measurement of low-density lipoprotein cholesterol: executive summary. The National cholesterol education program working group on lipoprotein measurement. Clin Chem 41:1414–1420

    PubMed  CAS  Google Scholar 

  2. Bataille V, Perret B, Dallongeville J, Arveiler D, Yarnell J, Ducimetiere P, Ferrieres J (2006) Metabolic syndrome and coronary heart disease risk in a population-based study of middle-aged men from France and Northern Ireland. A nested case-control study from the PRIME cohort. Diabetes Metab 32:475–479

    Article  PubMed  CAS  Google Scholar 

  3. D’Angelo G, Mintz JD, Tidwell JE, Schreihofer AM, Pollock DM, Stepp DW (2006) Exaggerated cardiovascular stress responses and impaired β-adrenergic-mediated pressor recovery in obese Zucker rats. Hypertension 48:1109–1115

    Article  PubMed  CAS  Google Scholar 

  4. Daemen MJ, De Mey JG (1995) Regional heterogeneity of arterial structural changes. Hypertension 25:464–473

    PubMed  CAS  Google Scholar 

  5. Deedwania P, Barter P, Carmena R, Fruchart JC, Grundy SM, Haffner S, Kastelein JJ, LaRosa JC, Schachner H, Shepherd J, Waters DD (2006) Reduction of low-density lipoprotein cholesterol in patients with coronary heart disease and metabolic syndrome: analysis of the treating to new targets study. Lancet 368: 919–928

    Article  PubMed  CAS  Google Scholar 

  6. El Midaoui A, de Champlain J (2005) Effects of glucose and insulin on the development of oxidative stress and hypertension in animal models of type 1 and type 2 diabetes. J Hypertens 23:581–588

    Article  PubMed  Google Scholar 

  7. Frisbee JC, Stepp DW (2001) Impaired NO-dependent dilation of skeletal muscle arterioles in hypertensive diabetic obese Zucker rats. Am J Physiol Heart Circ Physiol 281:H1304–H1311

    PubMed  CAS  Google Scholar 

  8. Galle J, Mameghani A, Bolz SS, Gambaryan S, Gorg M, Quaschning T, Raff U, Barth H, Seibold S, Wanner C, Pohl U (2003) Oxidized LDL and its compound lysophosphatidylcholine potentiate AngII-induced vasoconstriction by stimulation of RhoA. J Am Soc Nephrol 14:1471–1479

    Article  PubMed  CAS  Google Scholar 

  9. Grisk O, Heukäufer M, Steinbach A, Gruska S, Rettig R (2004) Analysis of arterial pressure regulating systems in renal post-transplantation hypertension. J Hypertens 22:199–207

    Article  PubMed  CAS  Google Scholar 

  10. Grisk O, Lother U, Gabriels G, Rettig R (2005) Influence of neonatal sympathectomy on proximal renal resistance artery function in spontaneously hypertensive rats. Pflugers Arch Eur J Physiol 449:364–371

    Article  CAS  Google Scholar 

  11. Harada K, Ohmori M, Kitoh Y, Sugimoto K, Fujimura A (1999) Impaired beta-adrenoceptor mediated venodilation in patients with diabetes mellitus. Br J Clin Pharmacol 47:427–431

    Article  PubMed  CAS  Google Scholar 

  12. Hopkins PN, Wu LL, Hunt SC, Brinton EA (2005) Plasma triglycerides and type III hyperlipidemia are independently associated with premature familial coronary artery disease. J Am Coll Cardiol 45:1003–1012

    Article  PubMed  CAS  Google Scholar 

  13. Hurst RT, Lee RW (2003) Increased incidence of coronary atherosclerosis in type 2 diabetes mellitus: mechanisms and management. Ann Intern Med 139:824–834

    PubMed  Google Scholar 

  14. Katakam PV, Snipes JA, Tulbert CD, Mayanagi K, Miller AW, Busija DW (2006) Impaired endothelin-induced vasoconstriction in coronary arteries of Zucker obese rats is associated with uncoupling of [Ca2+]i signaling. Am J Physiol Regul Integr Comp Physiol 290:R145–R153

    PubMed  CAS  Google Scholar 

  15. Katakam PV, Tulbert CD, Snipes JA, Erdos B, Miller AW, Busija DW (2005) Impaired insulin-induced vasodilation in small coronary arteries of Zucker obese rats is mediated by reactive oxygen species. Am J Physiol Heart Circ Physiol 288:H854–H860

    Article  PubMed  CAS  Google Scholar 

  16. Kloting I, Kovacs P, van den Brandt J (2001) Sex-specific and sex-independent quantitative trait loci for facets of the metabolic syndrome in WOKW rats. Biochem Biophys Res Commun 284:150–156

    Article  PubMed  CAS  Google Scholar 

  17. Kloting I, Voigt B, Vogt L (1995) Molecular analysis of diabetes-prone BB rat sublines and derivatives of their common ancestor as a tool to search for candidate loci causing different phenotypes in BB rats. Diabetes Res 29:65–71

    Google Scholar 

  18. Kovacs P, van den Brandt J, Kloting I (2000) Genetic dissection of the syndrome X in the rat. Biochem Biophys Res Commun 269:660–665

    Article  PubMed  CAS  Google Scholar 

  19. Kuo JJ, Jones OB, Hall JE (2003) Chronic cardiovascular and renal actions of leptin during hyperinsulinemia. Am J Physiol Regul Integr Comp Physiol 284:R1037–R1042

    PubMed  CAS  Google Scholar 

  20. Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S (2005) Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol 288:H2031–H2041

    Article  PubMed  CAS  Google Scholar 

  21. Naik JS, Xiang L, Hester RL (2006) Enhanced role for RhoA-associated kinase in adrenergic-mediated vasoconstriction in gracilis arteries from obese Zucker rats. Am J Physiol Regul Integr Comp Physiol 290:R154–R161

    PubMed  CAS  Google Scholar 

  22. Oltman CL, Richou LL, Davidson EP, Coppey LJ, Lund DD, Yorek MA (2006) Progression of coronary and mesenteric vascular dysfunction in Zucker obese and Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol 291:H1780–H1787

    Article  PubMed  CAS  Google Scholar 

  23. Quinones MJ, Hernandez-Pampaloni M, Schelbert H, Bulnes-Enriquez I, Jimenez X, Hernandez G, De La Rosa R, Chon Y, Yang H, Nicholas SB, Modilevsky T, Yu K, Van Herle K, Castellani LW, Elashoff R, Hsueh WA (2004) Coronary vasomotor abnormalities in insulin-resistant individuals. Ann Intern Med 140:700–708

    PubMed  Google Scholar 

  24. Reaven G (2002) Metabolic syndrome: pathophysiology and implications for management of cardiovascular disease. Circulation 106:286–288

    Article  PubMed  Google Scholar 

  25. Reaven GM (1995) Pathophysiology of insulin resistance in human disease. Physiol Rev 75:473–486

    PubMed  CAS  Google Scholar 

  26. Sandu OA, Ragolia L, Begum N (2000) Diabetes in the Goto-Kakizaki rat is accompanied by impaired insulin-mediated myosin-bound phosphatase activation and vascular smooth muscle cell relaxation. Diabetes 49:2178–2189

    Article  PubMed  CAS  Google Scholar 

  27. Schluter T, Grimm R, Steinbach A, Lorenz G, Rettig R, Grisk O (2006) Neonatal sympathectomy reduces NADPH oxidase activity and vascular resistance in spontaneously hypertensive rat kidneys. Am J Physiol Regul Integr Comp Physiol 291:R391–R399

    PubMed  Google Scholar 

  28. Stepp DW, Frisbee JC (2002) Augmented adrenergic vasoconstriction in hypertensive diabetic obese Zucker rats. Am J Physiol Heart Circ Physiol 282:H816–H820

    PubMed  CAS  Google Scholar 

  29. Tofovic SP, Jackson EK (2003) Rat models of the metabolic syndrome. Methods Mol Med 86:29–46

    PubMed  CAS  Google Scholar 

  30. Wannamethee SG, Shaper AG, Lennon L, Morris RW (2005) Metabolic syndrome vs Framingham risk score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Arch Intern Med 165:2644–2650

    Article  PubMed  Google Scholar 

  31. Werstiuk ES, Lee RM (2000) Vascular beta-adrenoceptor function in hypertension and in ageing. Can J Physiol Pharmacol 78:433–452

    Article  PubMed  CAS  Google Scholar 

  32. Wilke B, Kloting N, Kloting I (2005) Congenic WOK.DA and DA.WOKW rats confirm quantitative trait loci for serum leptin on chromosome 16. Diabetologia 48(Suppl 1):A114

    Google Scholar 

  33. Zhang J, Hupfeld CJ, Taylor SS, Olefsky JM, Tsien RY (2005) Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. Nature 437:569–573

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Deutsche Forschungsgemeinschaft grant no. 1430/2–4 and the Department of Cardiovascular Medicine of the University of Greifswald.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Grisk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grisk, O., Frauendorf, T., Schlüter, T. et al. Impaired coronary function in Wistar Ottawa Karlsburg W rats—a new model of the metabolic syndrome. Pflugers Arch - Eur J Physiol 454, 1011–1021 (2007). https://doi.org/10.1007/s00424-007-0267-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0267-6

Keywords

Navigation