Skip to main content

Advertisement

Log in

Combined effects of reduced connexin 43, depressed active generator properties and energetic stress on conduction disturbances in canine failing myocardium

  • Integrative Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

To show that reductions in connexin43 (Cx43) can contribute, in association with electrophysiological alterations identified from unipolar recordings, to conduction disturbances in a realistic model of heart failure, canines were subjected to chronic rapid pacing (240/min for 4 weeks) and progressive occlusion of the left coronary circumflex artery (LCx) by an ameroid constrictor. Alterations identified from 191 epicardial recordings included abrupt activation delay, functional block, ST segment potential elevation, and reduced maximum negative slope (−dV/dt max). The LCx territory was divided into apical areas with depressed conduction velocity (LCx1: 0.06 ± 0.04 m/s, mean ± SD) and basal areas with relatively preserved conduction (LCx2: 0.28 ± 0.01 m/s). Subepicardial Cx43 immunoblot measurements (percent of corresponding healthy heart measurements) were reduced in LCx1 (∼40%) and LCx2 (∼60%). In addition, −dV/dt max was significantly depressed (−3.8 ± 3.3 mV/ms) and ST segment potential elevated (23.3 ± 14.6 mV) in LCx1 compared to LCx2 (−9.5 ± 3.4 mV/ms and 0.3 ± 1.4 mV). Anisotropic conduction, Cx43 and ST segment potential measurements from the left anterior descending coronary artery territory, and interstitial collagen from all regions were similar to the healthy. Thus, moderate Cx43 reduction to “clinically relevant” levels can, in conjunction with regional energetic stress and depression of sarcolemmal active generator properties, provide a substrate for conduction disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Armstrong PW, Stopps TP, Ford SE, de Bold AJ (1986) Rapid ventricular pacing in the dog: pathophysiologic studies of heart failure. Circulation 74:1075–1084

    PubMed  CAS  Google Scholar 

  2. Axelsen LN, Stahlhut M, Mohammed S, Larsen BD, Nielsen MS, Holstein-Rathlou NH, Andersen S, Jensen ON, Hennan JK, Kjolbye AN (2006) Identification of ischemia-regulated phosphorylation sites in connexin43: a possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123). J Mol Cell Cardiol 40:790–798

    Article  PubMed  CAS  Google Scholar 

  3. Borlak J, Thum T (2003) Hallmarks of ion channel gene expression in end-stage heart failure. FASEB J 17:1592–1608

    Article  PubMed  CAS  Google Scholar 

  4. Boucher M, Pesant S, Falcao S, de Montigny C, Schampaert E, Cardinal R, Rousseau G (2004) Post-ischemic cardioprotection by A2A adenosine receptors: dependent of phosphatidylinositol 3-kinase pathway. J Cardiovasc Pharmacol 43:416–422

    Article  PubMed  CAS  Google Scholar 

  5. Cardinal R, Rousseau G, Bouchard C, Vermeulen M, Pagé PL (2003) Long term and transient alterations of ST segment and repolarization intervals in canines with chronic rapid ventricular pacing and coronary artery stenosis. Can J Cardiol 19(Suppl A): 162A

    Google Scholar 

  6. Cardinal R, Rousseau G, Bouchard C, Vermeulen M, Latour J-G, Pagé PL (2004) Myocardial electrical alteration in canine preparations with combined chronic rapid pacing and progressive coronary artery occlusion. Am J Physiol Heart Circ Physiol 286:H1496–H1506

    Article  PubMed  CAS  Google Scholar 

  7. Chen M, Jones DL (2000) Age- and myopathy-dependent changes in connexins of normal and cardiomyopathic Syrian hamster ventricular myocardium. Can J Physiol Pharmacol 78:669–678

    Article  PubMed  CAS  Google Scholar 

  8. Cooper CD, Lampe PD (2002) Casein kinase 1 regulates connexin-43 gap junction assembly. J Biol Chem 277:44962–44968

    Article  PubMed  CAS  Google Scholar 

  9. Daleau P, Boudriau S, Michaud M, Jolicoeur C, Kingma JG Jr (2001) Preconditioning in the absence or presence of sustained ischemia modulates myocardial Cx43 protein levels and gap junction distribution. Can J Physiol Pharmacol 79:371–378

    Article  PubMed  CAS  Google Scholar 

  10. Danik SB, Liu F, Zhang J, Suk HJ, Morley GE, Fishman GI, Gutstein DE (2004) Modulation of cardiac gap junction expression and arrhythmic susceptibility. Circ Res 95:1035–1041

    Article  PubMed  CAS  Google Scholar 

  11. Dhein S, Larsen BD, Petersen JS, Mohr FW (2003) Effects of the new antiarrhythmic peptide ZP123 on epicardial activation and repolarization patterns. Cell Commun Adhes 10:371–378

    Article  PubMed  CAS  Google Scholar 

  12. Doble BW, Ping P, Kardami E (2000) The epsilon subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation. Circ Res 86:293–301

    PubMed  CAS  Google Scholar 

  13. Dupont E, Matsushita T, Kaba RA, Vozzi C, Coppen SR, Khan N, Kaprielian R, Yacoub MH, Severs NJ (2001) Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol 33:359–371

    Article  PubMed  CAS  Google Scholar 

  14. Eble DM, Spinale FG (1995) Contractile and cytoskeletal content, structure, and mRNA levels with tachycardia-induced cardiomyopathy. Am J Physiol Heart Circ Physiol 268:H2426–H2439

    CAS  Google Scholar 

  15. Eloff BC, Lerner DL, Yamada KA, Schuessler RB, Saffitz JE, Rosenbaum DS (2001) High resolution optical mapping reveals conduction slowing in connexin-43 deficient mice. Cardiovasc Res 51:681–690

    Article  PubMed  CAS  Google Scholar 

  16. Guerrero PA, Schuessler RB, Beyer EC, Johnson CM, Yamada KA, Saffitz JE (1997) Slow ventricular conduction in mice heterozygous for a connexin43 null mutation. J Clin Invest 99:1991–1998

    PubMed  CAS  Google Scholar 

  17. Heinke MY, Wheeler CH, Yan JX, Amin V, Chang D, Einstein R, Dunn MJ, dos Remedios CG (1999) Changes in myocardial protein expression in pacing-induced canine heart failure. Electrophoresis 20:2086–2093

    Article  PubMed  CAS  Google Scholar 

  18. Hélie F, Cossette J, Vermeulen M, Cardinal R (1995) Differential effects of lignocaine and hypercalcaemia on anisotropic conduction and reentry in the ischaemically damaged canine ventricle. Cardiovasc Res 29:359–372

    Article  PubMed  Google Scholar 

  19. Hélie F, Vinet A, Cardinal R (2000) Cycle length dynamics at the onset of postinfarction ventricular tachycardias induced in canines: dependence on interval-dependent excitation properties of the reentrant substrate. J Cardiovasc Electrophysiol 11:531–544

    Article  PubMed  Google Scholar 

  20. Holland RP, Brooks H (1977) TQ–ST segment mapping: critical review and analysis of current concepts. Am J Cardiol 40:110–129

    Article  PubMed  CAS  Google Scholar 

  21. Huang XD, Sandusky GE, Zipes DP (1999) Heterogeneous loss of connexin43 protein in ischemic dog hearts. J Cardiovasc Electrophysiol 10:79–91

    Article  PubMed  CAS  Google Scholar 

  22. Jones DL, Sutton PE, Feng Q (2005) iNOS-released NO decreases Cx43 in ventricles of mice. FASEB J 19: 919.1(abstract)

    Google Scholar 

  23. Kawara T, Derksen R, de Groot JR, Coronel R, Tasseron S, Linnenbank AC, Hauer RN, Kirkels H, Janse MJ, de Bakker JM (2001) Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation 104:3069–3075

    PubMed  CAS  Google Scholar 

  24. Kitamura H, Ohnishi Y, Yoshida A, Okajima K, Azumi H, Ishida A, Galeano EJ, Kubo S, Hayashi Y, Itoh H, Yokoyama M (2002) Heterogeneous loss of connexin43 protein in nonischemic dilated cardiomyopathy with ventricular tachycardia. J Cardiovasc Electrophysiol 13:865–870

    Article  PubMed  Google Scholar 

  25. Kléber AG, Rudy Y (2004) Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 84:431–488

    Article  PubMed  Google Scholar 

  26. Komamura K, Shannon RP, Pasipoularides A, Ihara T, Lader AS, Patrick TA, Bishop SP, Vatner SF (1992) Alterations in left ventricular diastolic function in conscious dogs with pacing-induced heart failure. J Clin Invest 89:1825–1838

    Article  PubMed  CAS  Google Scholar 

  27. Kostin S, Dammer S, Hein S, Klovekorn WP, Bauer EP, Schaper J (2004) Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res 62:426–436

    Article  PubMed  CAS  Google Scholar 

  28. Kostin S, Rieger M, Dammer S, Hein S, Richter M, Klovekorn WP, Bauer EP, Schaper J (2003) Gap junction remodeling and altered connexin43 expression in the failing human heart. Mol Cell Biochem 242:135–144

    Article  PubMed  CAS  Google Scholar 

  29. Lammers WJ, Schalij MJ, Kirchhof CJ, Allessie MA (1990) Quantification of spatial inhomogeneity in conduction and initiation of re-entrant atrial arrhytmias. Am J Physiol 259:H1254–H1263

    PubMed  CAS  Google Scholar 

  30. Laurent CE, Cardinal R, Rousseau G, Vermeulen M, Bouchard C, Wilkinson M, Armour JA, Bouvier M (2001) Functional desensitization to isoproterenol without reducing cAMP production in canine failing cardiocytes. Am J Physiol Regul Integr Comp Physiol 280:R355–R364

    PubMed  CAS  Google Scholar 

  31. Lei B, Lionett1 V, Young ME, Chandler MP, d’Agsotino C, Kang E, Altarejos M, Matsuo K, Hintze TH, Stanley WC, Recchia FA (2004) Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J Mol Cell Cardiol 36:567–576

    Article  PubMed  CAS  Google Scholar 

  32. Lerner DL, Yamada KA, Schuessler RB, Saffitz JE (2000) Accelerated onset and increased incidence of ventricular arrhythmias induced by ischemia in Cx43-deficient mice. Circulation 101:547–552

    PubMed  CAS  Google Scholar 

  33. Li D, Fareh S, Leung TK, Nattel S (1999) Promotion of atrial fibrillation by heart failure in dogs: atrial remodelling of a different sort. Circulation 100:87–95

    PubMed  CAS  Google Scholar 

  34. Martinez AD, Hayrapetyan V, Moreno AP, Beyer EC (2002) Connexin43 and connexin45 form heteromeric gap junction channels in which individual components determine permeability and regulation. Circ Res 90:1100–1107

    Article  PubMed  CAS  Google Scholar 

  35. Matsushita T, Oyamada M, Fujimoto K, Yasuda Y, Masuda S, Wada Y, Oka T, Takamatsu T (1999) Remodeling of cell-cell and cell-extracellular matrix interactions at the border zone of rat myocardial infarcts. Circ Res 85:1046–1055

    PubMed  CAS  Google Scholar 

  36. Mukherjee R, Hewett KW, Walker JD, Basler CG, Spinale FG (1998) Changes in L-type calcium channel abundance and function during the transition to pacing-induced congestive heart failure. Cardiovasc Res 37:432–444

    Article  PubMed  CAS  Google Scholar 

  37. Neumann T, Vollmer A, Schaffner Th, Hess OM, Heusch G (1999) Diastolic dysfunction and collagen structure in canine pacing-induced heart failure. J Mol Cell Cardiol 31:179–192

    Article  PubMed  CAS  Google Scholar 

  38. O’Rourke B, Ramza BM, Marban E (1994) Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science 265:962–966

    Article  PubMed  CAS  Google Scholar 

  39. O’Rourke B, Kass DA, Tomaselli GF, Kaab S, Tunin R, Marban E (1999) Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure. I. Experimental studies. Circ Res 84:562–570

    PubMed  CAS  Google Scholar 

  40. Peters NS, Coromilas J, Severs NJ, Wit AL (1997) Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation 95:988–996

    PubMed  CAS  Google Scholar 

  41. Peters NS, Green CR, Poole-Wilson PA, Severs NJ (1993) Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts. Circulation 88:864–875

    PubMed  CAS  Google Scholar 

  42. Poelzing S, Rosenbaum DS (2004) Altered connexin43 expression produces arrhythmia substrate in heart failure. Am J Physiol Heart Circ Physiol 287:H1762–H1770

    Article  PubMed  CAS  Google Scholar 

  43. Pu J, Boyden PA (1997) Alterations of Na+ currents in myocytes from epicardial border zone of the infarcted heart. A possible ionic mechanism for reduced excitability and postrepolarization refractoriness. Circ Res 81:110–119

    PubMed  CAS  Google Scholar 

  44. Schaper W (1971) The collateral circulation of the heart. North-Holland, Amsterdam , p 21

    Google Scholar 

  45. Sepp R, Severs NJ, Gourdie RG (1996) Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiomyopathy. Heart 76:412–417

    PubMed  CAS  Google Scholar 

  46. Severs NJ (2002) Gap junction remodeling in heart failure. J Card Fail 8:S293–S299

    Article  PubMed  Google Scholar 

  47. Shaw RM, Rudy Y (1997) Electrophysiologic effects of acute myocardial ischemia. A mechanistic investigation of action potential conduction and conduction failure. Circ Res 80:124–138

    PubMed  CAS  Google Scholar 

  48. Shaw RM, Rudy Y (1997) Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ Res 81:727–741

    PubMed  CAS  Google Scholar 

  49. Spinale FG, Tomita M, Zellner JL, Cook JC, Crawford FA, Zile MR (1991) Collagen remodeling and changes in LV function during development and recovery from supraventricular tachycardia. Am J Physiol 261:H308–H318

    PubMed  CAS  Google Scholar 

  50. Thomas SP, Kucera JP, Bircher-Lehmann L, Rudy Y, Saffitz JE, Kléber AG (2003) Impulse propagation in synthetic strands of neonatal cardiac myocytes with genetically reduced levels of connexin 43. Circ Res 92:1209–1216

    Article  PubMed  CAS  Google Scholar 

  51. Tomoike H, Inou T, Watanabe K, Mizukami M, Kikuchi Y, Nakamura M (1983) Functional significance of collaterals during ameroid-induced coronary stenosis in conscious dogs. Interrelationships among regional shortening, regional flow and grade of coronary stenosis. Circulation 67:1001–1008

    PubMed  CAS  Google Scholar 

  52. Uretsky BF, Thygesen K, Armstrong PW, Cleland JG, Horowitz JD, Massie BM, Packer M, Poole-Wilson PA, Ryden L (2000) Acute coronary findings at autopsy in heart failure patients with sudden death: results from the assessment of treatment with lisinopril and survival (ATLAS) trial. Circulation 102:611–616

    PubMed  CAS  Google Scholar 

  53. Ursell PC, Gardner PI, Albala A, Fenoglio JJ Jr, Wit AL (1985) Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Circ Res 56:436–451

    PubMed  CAS  Google Scholar 

  54. Uzzaman M, Honjo H, Takagishi Y, Emdad L, Magee AI, Severs NJ, Kodama I (2000) Remodeling of gap junctional coupling in hypertrophied right ventricles of rats with monocrotaline-induced pulmonary hypertension. Circ Res 86:871–878

    PubMed  CAS  Google Scholar 

  55. van Rijen HVT, Eckardt D, Degen J, Theis M, Ott T, Willecke K, Jongsma HJ, Opthof T, de Bakker JMT (2004) Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43. Circulation 109:1048–1055

    Article  PubMed  CAS  Google Scholar 

  56. Weber KT, Pick R, Silver MA, Moe GW, Janicki JS, Zucker IH, Armstrong PW (1990) Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation 82:1387–1401

    PubMed  CAS  Google Scholar 

  57. Whittaker P, Kloner RA, Boughner DR, Pickering JG (1994) Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res Cardiol 89:397–410

    Article  PubMed  CAS  Google Scholar 

  58. World Medical Association (2002) Guiding principles for research involving animals and human beings. Am J Physiol Regul Integr Comp Physiol 283:R281–R283

    Google Scholar 

  59. Xing D, Kjolbye AL, Nielsen MS, Petersen JS, Harlow KW, Holstein-Rathlou NH, Martins JB (2003) ZP123 increases gap junctional conductance and prevents re-entrant ventricular tachycardia during myocardial ischemia in open chest dogs. J Cardiovasc Electrophysiol 14:510–520

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support of the Canadian Institutes of Health Research and Heart and Stroke Foundation of Québec for this investigation is gratefully acknowledged. None of the authors have any competing financial interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Cardinal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falcao, S., Rousseau, G., Baroudi, G. et al. Combined effects of reduced connexin 43, depressed active generator properties and energetic stress on conduction disturbances in canine failing myocardium. Pflugers Arch - Eur J Physiol 454, 999–1009 (2007). https://doi.org/10.1007/s00424-007-0266-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0266-7

Keywords

Navigation