Skip to main content
Log in

cGMP-dependent protein kinase in regulation of basal tone and in nitroglycerin- and nitric-oxide-induced relaxation in porcine coronary artery

  • Cardiovascular System
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) may act as a critical enzyme for nitric-oxide-induced vasodilation. In this study, the role of PKG in regulation of basal tension and in relaxation induced by nitrovasodilators in coronary arteries was determined. Under basal conditions, Rp-8-Br-PET-cGMPS, a specific PKG inhibitor, evoked a significant contraction of isolated porcine coronary arteries, which was prevented by nitro-l-arginine or the removal of the endothelium. Relaxation to nitroglycerin and (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA NONOate) in vessels preconstricted with U46619 was largely abolished by 1H-[1,2,4]oxadiazolo[4,3]quinoxalin-1-one (ODQ) and inhibited by 48 to 79% by Rp-8-Br-PET-cGMPS. Relaxation of the vessels to 8-Br-cGMP was inhibited by 56% by Rp-8-Br-PET-cGMPS. The basal activity of PKG but not that of cyclic adenosine monophosphate-dependent protein kinase (PKA) was inhibited by nitro-l-arginine, ODQ, or Rp-8-Br-PET-cGMPS. The activity of PKG but not that of PKA was increased by nitroglycerin and DETA NONOate in intact vessels and increased by cGMP in the tissue homogenates. These effects were abolished by Rp-8-Br-PET-cGMPS but not by myristoylated PKI, a specific inhibitor of PKA. These results suggest that in porcine coronary arteries, PKG is involved in the regulation of basal tension and plays a primary role in relaxation induced by nitrovasodilators, whereas PKA may play a minor role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Algara-Suarez P, Espinosa-Tanguma R (2004) 8-Br-cGMP mediates relaxation of tracheal smooth muscle through PKA. Biochem Biophys Res Commun 314:597–601

    Article  PubMed  CAS  Google Scholar 

  2. Bonnevier J, Fässler R, Somlyo AP, Somlyo AV, Arner A (2004) Modulation of Ca2+ sensitivity by cyclic nucleotides in smooth muscle from protein kinase G deficient mice. J Biol Chem 279:5146–5151

    Article  PubMed  CAS  Google Scholar 

  3. Bradford MM (1973) A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Chem 72:249–254

    Google Scholar 

  4. Busse R, Fleming I (2003) Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces. Trends Pharmacol Sci 24:24–29

    Article  PubMed  CAS  Google Scholar 

  5. Butt E, Pohler D, Genieser HG, Huggins JP, Bucher B (1995) Inhibition of cyclic GMP-dependent protein kinase-mediated effects by (Rp)-8-bromo-PET-cyclic GMPS. Br J Pharmacol 116:3110–3116

    PubMed  CAS  Google Scholar 

  6. Coleman RA, Humphrey PP, Kennedy I, Levy GP, Lumley P (1981) Comparison of the actions of U-46619, a prostaglandin H2-analogue, with those of prostaglandin H2 and thromboxane A2 on some isolated smooth muscle preparations. Br J Pharmacol 73:773–778

    PubMed  CAS  Google Scholar 

  7. Cornwell TL, Arnold E, Boerth NJ, Lincoln TM (1994) Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am J Physiol 267:1405–1413

    Google Scholar 

  8. Corriu C, Feletou M, Puybasset L, Bea ML, Berdeaux A, Vanhoutte PM (1998) Endothelium-dependent hyperpolarization in isolated arteries taken from animals treated with NO-synthase inhibitors. J Cardiovasc Pharmacol 32:944–950

    Article  PubMed  CAS  Google Scholar 

  9. De la Lande IS, Stafford I, Horowitz JD (1999) Effects of guanylyl cyclase and protein kinase G inhibitors on vasodilatation in non-tolerant and tolerant bovine coronary arteries. Eur J Pharmacol 370:39–46

    Article  PubMed  Google Scholar 

  10. Dhanakoti S, Gao Y, Nguyen MQ, Raj JU (2000) Involvement of cGMP-dependent protein kinase in the relaxation of ovine pulmonary arteries to cGMP and cAMP. J Appl Physiol 88:1637–1642

    PubMed  CAS  Google Scholar 

  11. Feil R, Gappa N, Rutz M (2002) Functional reconstitution of vascular smooth muscle cells with cGMP-dependent protein kinase I isoforms. Circ Res 90:1080–1086

    Article  PubMed  CAS  Google Scholar 

  12. Francis SH, Noblett BD, Todd BW, Wells JN, Corbin JD (1988) Relaxation of vascular and tracheal smooth muscle by cyclic nucleotide analogs that preferentially activate purified cGMP-dependent protein kinase. Mol Pharmacol 34:506–517

    PubMed  CAS  Google Scholar 

  13. Francis SH, Corbin JD (1994) Progress in understanding the mechanism and function of cyclic GMP-dependent protein kinase. Adv Pharmacol 26:115–170

    PubMed  CAS  Google Scholar 

  14. Francis SH, Corbin JD (1994) Structure and function of cyclic nucleotide-dependent protein-kinases. Annu Rev Physiol 56:237–272

    Article  PubMed  CAS  Google Scholar 

  15. Gao Y, Zhou H, Ibe BO, Raj JU (1996) Prostaglandin E2 and I2 cause greater relaxations in pulmonary veins than in arteries of newborn lambs. J Appl Physiol 81:2534–2539

    PubMed  CAS  Google Scholar 

  16. Gao Y, Dhanakoti S, Tolsa J-F, Raj JU (1999) Role of protein kinase G in nitric oxide- and cGMP-induced relaxation of newborn ovine pulmonary veins. J Appl Physiol 87:993–998

    PubMed  CAS  Google Scholar 

  17. Garthwaite J, Southam E, Boulton CL (1995) Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol 48:184–188

    PubMed  CAS  Google Scholar 

  18. Gillespie PC (1990) Phosphodiesterases in visual transduction by rods and cones. In: Beavo J, Houslay MD (eds) Cyclic nucleotide phosphodiesterases: structure, regulation and drug action. Wiley, New York, pp 163–184

    Google Scholar 

  19. Glass DB, Krebs EG (1982) Phosphorylation by guanosine 3′,5′-monophosphate-dependent protein kinase of synthetic peptide analogs of a site phosphorylated in histone H2B. J Biol Chem 257:1196–1200

    PubMed  CAS  Google Scholar 

  20. Hofmann F, Ammendola A, Schlossmann J (2000) Rising behind NO: cGMP-dependent protein kinase. J Cell Sci 113:1671–1676

    PubMed  CAS  Google Scholar 

  21. Hofmann F, Feil R, Kleppisch T, Schlossmann J (2006) Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86:1–23

    Article  PubMed  CAS  Google Scholar 

  22. Ignarro LJ (2002) Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 53:503–514

    PubMed  CAS  Google Scholar 

  23. Jiang H, Colbran JL, Francis SH, Corbin JD (1992) Direct evidence for cross-activation of cGMP-dependent protein kinase by cAMP in pig coronary arteries. J Biol Chem 267:1015–1019

    PubMed  CAS  Google Scholar 

  24. Kawada T, Toyosato A, Islam MO, Yoshida Y, Imai S (1997) cGMP-kinase mediates cGMP- and cAMP-induced Ca2+ desensitization of skinned rat artery. Eur J Pharmacol 323:75–82

    Article  PubMed  CAS  Google Scholar 

  25. Keefer LK, Nims RW, Davies KM (1996) “NONOates” (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: convenient nitric oxide dosage forms. Methods Enzymol 268:281–293

    PubMed  CAS  Google Scholar 

  26. Keilbach A, Ruth P, Hofmann F (1992) Detection of cGMP dependent protein kinase isozymes by specific antibodies. Eur J Biochem 208:467–473

    Article  PubMed  CAS  Google Scholar 

  27. Kenakin TP (1997) Pharmacologic analysis of drug-receptor interaction, 3rd edn. Lippincott Williams and Wilkins, Philadelphia, USA

    Google Scholar 

  28. Keung W, Vanhoutte PM, Man RY (2005) Acute impairment of contractile responses by 17beta-estradiol is cAMP and protein kinase G dependent in vascular smooth muscle cells of the porcine coronary arteries. Br J Pharmacol 144:71–79

    Article  PubMed  CAS  Google Scholar 

  29. Lincoln TM, Dey N, Sellak H (2001) cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol 91:1421–1430

    PubMed  CAS  Google Scholar 

  30. Lohmann SM, Walter U (2005) Tracking functions of cGMP-dependent protein kinase (cGK). Front Biosci 10:1313–1328

    Article  PubMed  CAS  Google Scholar 

  31. Melichar VO, Behr-Roussel D, Zabel U, Uttenthal LO, Rodrigo J, Rupin A, Verbeuren TJ, Kumar HSA, Schmidt HH (2004) Reduced cGMP signaling associated with neointimal proliferation and vascular dysfunction in late-stage atherosclerosis. Proc Natl Acad Sci USA 101:16671–16676

    Article  PubMed  CAS  Google Scholar 

  32. Meyer RBJ, Miller JP (1974) Analogs of cyclic AMP and cyclic GMP: general methods of synthesis and the relationship of structure to enzymic activity. Life Sci 14:1019–1040

    Article  PubMed  CAS  Google Scholar 

  33. Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, Forstermann U, Meinertz T, Griendling K, Munzel T (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90:58–65

    Article  Google Scholar 

  34. Moncada S, Higgs A (1993) The l-arginine-nitric oxide pathway. New Engl J Med 329:2002–2012

    Article  PubMed  CAS  Google Scholar 

  35. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  36. Mülsch A, Busse R (1990) NG-nitro-l-arginine (N5-[imino (nitroamino) methyl]-l-ornithine) impairs endothelium-dependent dilations by inhibiting cytosolic nitric oxide synthesis from l-arginine. Naunyn-Schmiedeberg’s Arch Pharmacol 341:143–147

    Google Scholar 

  37. Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirneiß C, Wang GX, Korth M, Aszodi A, Andersson KE, Krombach F, Mayerhofer A, Ruth P, Fassler R, Hofmann F (1998) Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J 17:3045–3051

    Article  PubMed  CAS  Google Scholar 

  38. Quyyumi A, Dakak N, Andrews NP, Husain S, Arora S, Gilligan DM, Panza JA, Cannon RO (1995) Nitric oxide activity in the human coronary circulation. J Clin Invest 95:1747–1755

    Article  PubMed  CAS  Google Scholar 

  39. Randriamboavonjy V, Kiss L, Falck JR, Busse R, Fleming I (2005) The synthesis of 20-HETE in small porcine coronary arteries antagonizes EDHF-mediated relaxation. Cardiovasc Res 65:487–494

    Article  PubMed  CAS  Google Scholar 

  40. Rivero-Vilches FJ, de Frutos S, Saura M, Rodriguez-Puyol D, Rodriguez-Puyol M (2003) Differential relaxing responses to particulate or soluble guanylyl cyclase activation on endothelial cells: a mechanism dependent on PKG-I alpha activation by NO/cGMP. Am J Physiol Cell Physiol 285:891–898

    Google Scholar 

  41. Schulz E, Tsilimingas N, Rinze R, Reiter B, Wendt M, Oelze M, Woelken-Weckmüller S, Walter U, Reichenspurner H, Meinertz T, Münzel T (2002) Functional and biochemical analysis of endothelial (dys)function and NO/cGMP signaling in human blood vessels with and without nitroglycerin pretreatment. Circulation 105:1170–1175

    Article  PubMed  CAS  Google Scholar 

  42. Sekhar KR, Hatchett RJ, Shabb JB, Wolfe L, Francis SH, Wells JN, Jastorff B, Butt E, Chakinala MM, Corbin JD (1992) Relaxation of pig coronary arteries by new and potent cGMP analogs that selectively activate type I alpha, compared with type I beta, cGMP-dependent protein kinase. Mol Pharmacol 42:103–108

    PubMed  CAS  Google Scholar 

  43. Schlossmann J, Hofmann F (2005) cGMP-dependent protein kinases in drug discovery. Drug Discov Today 10:627–634

    Article  PubMed  CAS  Google Scholar 

  44. Schwede F, Maronde E, Genieser H, Jastorff B (2000) Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol Ther 87:199–226

    Article  PubMed  CAS  Google Scholar 

  45. Su J, Scholz PM, Weiss HR (2005) Differential effects of cGMP produced by soluble and particulate guanylyl cyclase on mouse ventricular myocytes. Exp Biol Med 230:242–250

    CAS  Google Scholar 

  46. Vanhoutte PM (2003) Endothelial control of vasomotor function: from health to coronary disease. Circ J 67:572–575

    Article  PubMed  CAS  Google Scholar 

  47. Walsh DA, Ashby CD, Gonzalez C, Calkins D, Fischer EH, Krebs EG (1971) Purification and characterization of a protein inhibitor of adenosine 3′,5′-monophosphate-dependent protein kinase. J Biol Chem 246:1977–1985

    PubMed  CAS  Google Scholar 

  48. Wang X, Tong M, Chinta S, Raj JU, Gao Y (2006) Hypoxia-induced reactive oxygen species downregulate ETB receptor-mediated contraction of rat pulmonary arteries. Am J Physiol 290:570–578

    Google Scholar 

  49. Yamahara K, Itoh H, Chun TH, Ogawa Y, Yamashita J, Sawada N, Fukunaga Y, Sone M, Yurugi-Kobayashi T, Miyashita K, Tsujimoto H, Kook H, Feil R, Garbers DL, Hofmann F, Nakao K (2003) Significance and therapeutic potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in vascular regeneration. Proc Natl Acad Sci USA 100:3404–3409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the National Natural Science Foundation of China, Grant #30370523, #30470629, a Program for Changjiang Scholars and Innovative Research Team in University, the Major National Basic Research Program of the People’s Republic of China (No. 2006CB503802), and the National Institute of Health Grants HL-059435 and HL-075187, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuansheng Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, X., Zheng, X., Qi, H. et al. cGMP-dependent protein kinase in regulation of basal tone and in nitroglycerin- and nitric-oxide-induced relaxation in porcine coronary artery. Pflugers Arch - Eur J Physiol 454, 913–923 (2007). https://doi.org/10.1007/s00424-007-0249-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0249-8

Keywords

Navigation