Skip to main content
Log in

Sparks and embers of skeletal muscle: the exciting events of contractile activation

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Intracellular calcium concentration ([Ca2+]i) is a key player in a wide range of cellular functions from long-term effects that determine the fate of the cell to immediate responses as secretion and motility. To initiate contraction, calcium ions in skeletal muscle are released into the myoplasm through the calcium channels, the ryanodine receptors, of the sarcoplasmic reticulum. The opening of these channels give rise to localised increases in [Ca2+]i, originally termed calcium sparks, that fuse and generate the global calcium transient. Whereas calcium sparks in amphibians are abundant and stereotyped, events in mammalian skeletal muscle are scarce and morphologically diverse. This review compares the different forms of calcium release events, occurring spontaneously or evoked by a depolarising pulse, observed in the different classes of vertebrates. It then addresses the questions whether or not these events can be considered as elementary and how the global calcium transient can be reconstructed from them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams BA, Beam KG (1990) Muscular dysgenesis in mice: a model system for studying excitation–contraction coupling. FASEB J 4:2809–2816

    PubMed  CAS  Google Scholar 

  2. Baylor SM, Hollingworth S, Chandler WK (2002) Comparison of simulated and measured calcium sparks in intact skeletal muscle fibers of the frog. J Gen Physiol 120:349–368

    Article  PubMed  CAS  Google Scholar 

  3. Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205

    Article  PubMed  CAS  Google Scholar 

  4. Bertocchini F, Ovitt CE, Conti A, Barone V, Scholer HR, Bottinelli R, Reggiani C, Sorrentino V (1997) Requirement for the ryanodine receptor type 3 for efficient contraction in neonatal skeletal muscles. EMBO J 16:6956–6963

    Article  PubMed  CAS  Google Scholar 

  5. Blatter LA, Huser J, Ríos E (1997) Sarcoplasmic reticulum Ca2+ release flux underlying Ca2+ sparks in cardiac muscle. Proc Natl Acad Sci USA 94:4176–4181

    Article  PubMed  CAS  Google Scholar 

  6. Bolton TB, Prestwich SA, Zholos AV, Gordienko DV (1999) Excitation–contraction coupling in gastrointestinal and other smooth muscles. Annu Rev Physiol 61:85–115

    Article  PubMed  CAS  Google Scholar 

  7. Brochet DX, Yang D, Di Maio A, Lederer WJ, Franzini-Armstrong C, Cheng H (2005) Ca2+ blinks: rapid nanoscopic store calcium signaling. Proc Natl Acad Sci USA 102:3091–3099

    Article  CAS  Google Scholar 

  8. Chandler WK, Rakowski RF, Schneider MF (1976) Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J Physiol 254:285–316

    PubMed  CAS  Google Scholar 

  9. Chen L, Molinski TF, Pessah IN (1999) Bastadin 10 stabilizes the open conformation of the ryanodine-sensitive Ca2+ channel in an FKBP12-dependent manner. J Biol Chem 274:32603–32612

    Article  PubMed  CAS  Google Scholar 

  10. Cheng H, Lederer MR, Xiao RP, Gomez AM, Zhou YY, Ziman B, Spurgeon H, Lakatta EG, Lederer WJ (1996) Excitation–contraction coupling in heart: new insights from Ca2+ sparks. Cell Calcium 20:129–140

    Article  PubMed  CAS  Google Scholar 

  11. Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation–contraction coupling in heart muscle. Science 262:740–744

    Article  PubMed  CAS  Google Scholar 

  12. Conklin MW, Ahern CA, Vallejo P, Sorrentino V, Takeshima H, Coronado R (2000) Comparison of Ca2+ sparks produced independently by two ryanodine receptor isoforms (type 1 or type 3). Biophys J 78:1777–1785

    PubMed  CAS  Google Scholar 

  13. Conti A, Gorza L, Sorrentino V (1996) Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles. Biochem J 316:19–23

    PubMed  CAS  Google Scholar 

  14. Csernoch L, Pouvreau S, Jacquemond V (2006) Voltage activated calcium release events in mouse skeletal muscle fibers. Biophys J 90:326a

    Google Scholar 

  15. Csernoch L, Zhou J, Stern MD, Brum G, Ríos E (2004) The elementary events of Ca2+ release elicited by membrane depolarization in mammalian muscle. J Physiol 557:43–58

    Article  PubMed  CAS  Google Scholar 

  16. DelPrincipe F, Egger M, Niggli E (1999) Calcium signalling in cardiac muscle: refractoriness revealed by coherent activation. Nat Cell Biol 1:323–329

    Article  PubMed  CAS  Google Scholar 

  17. el-Hayek R, Lokuta AJ, Arevalo C, Valdivia HH (1995) Peptide probe of ryanodine receptor function. Imperatoxin A, a peptide from the venom of the scorpion Pandinus imperator, selectively activates skeletal-type ryanodine receptor isoforms. J Biol Chem 270:28696–28704

    Article  PubMed  CAS  Google Scholar 

  18. Fajloun Z, Kharrat R, Chen L, Lecomte C, Di Luccio E, Bichet D, El Ayeb M, Rochat H, Allen PD, Pessah IN, De Waard M, Sabatier JM (2000) Chemical synthesis and characterization of maurocalcine, a scorpion toxin that activates Ca2+ release channel/ryanodine receptors. FEBS Lett 469:179–185

    Article  PubMed  CAS  Google Scholar 

  19. Fill M, Coronado R, Mickelson JR, Vilven J, Ma JJ, Jacobson BA, Louis CF (1990) Abnormal ryanodine receptor channels in malignant hyperthermia. Biophys J 57:471–475

    PubMed  CAS  Google Scholar 

  20. Gonzalez A, Kirsch WG, Shirokova N, Pizarro G, Brum G, Pessah IN, Stern MD, Cheng H, Ríos E (2000) Involvement of multiple intracellular release channels in calcium sparks of skeletal muscle. Proc Natl Acad Sci USA 97:4380–4385

    Article  PubMed  CAS  Google Scholar 

  21. Gyorke S, Gyorke I, Lukyanenko V, Terentyev D, Viatchenko-Karpinski S, Wiesner TF (2002) Regulation of sarcoplasmic reticulum calcium release by luminal calcium in cardiac muscle. Front Biosci 7:d1454–d1463

    Article  PubMed  CAS  Google Scholar 

  22. Hinch R (2004) A mathematical analysis of the generation and termination of calcium sparks. Biophys J 86:1293–1307

    PubMed  CAS  Google Scholar 

  23. Hollingworth S, Peet J, Chandler WK, Baylor SM (2001) Calcium sparks in intact skeletal muscle fibers of the frog. J Gen Physiol 118:653–678

    Article  PubMed  CAS  Google Scholar 

  24. Hui CS, Besch HR Jr, Bidasee KR (2004) Effects of ryanoids on spontaneous and depolarization-evoked calcium release events in frog muscle. Biophys J 87:243–255

    Article  PubMed  CAS  Google Scholar 

  25. Imagawa T, Smith JS, Coronado R, Campbell KP (1987) Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium release channel. J Biol Chem 262:16636–16643

    PubMed  CAS  Google Scholar 

  26. Isaeva EV, Shirokova N (2003) Metabolic regulation of Ca2+ release in permeabilized mammalian skeletal muscle fibres. J Physiol 547:453–462

    Article  PubMed  CAS  Google Scholar 

  27. Isaeva EV, Shkryl VM, Shirokova N (2005) Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle. J Physiol 565:855–872

    Article  PubMed  CAS  Google Scholar 

  28. Kettlun C, Gonzalez A, Ríos E, Fill M (2003) Unitary Ca2+ current through mammalian cardiac and amphibian skeletal muscle ryanodine receptor channels under near-physiological ionic conditions. J Gen Physiol 122:407–417

    Article  PubMed  CAS  Google Scholar 

  29. Kirsch WG, Uttenweiler D, Fink RH (2001) Spark- and ember-like elementary Ca2+ release events in skinned fibres of adult mammalian skeletal muscle. J Physiol 537:379–389

    Article  PubMed  CAS  Google Scholar 

  30. Klein MG, Cheng H, Santana LF, Jiang YH, Lederer WJ, Schneider MF (1996) Two mechanisms of quantized calcium release in skeletal muscle. Nature 379:455–458

    Article  PubMed  CAS  Google Scholar 

  31. Klein MG, Lacampagne A, Schneider MF (1997) Voltage dependence of the pattern and frequency of discrete Ca2+ release events after brief repriming in frog skeletal muscle. Proc Natl Acad Sci USA 94:11061–11066

    Article  PubMed  CAS  Google Scholar 

  32. Klein MG, Schneider MF (2006) Ca2+ sparks in skeletal muscle. Prog Biophys Mol Biol 92:308–332

    Article  PubMed  CAS  Google Scholar 

  33. Lacampagne A, Lederer WJ, Schneider MF, Klein MG (1996) Repriming and activation alter the frequency of stereotyped discrete Ca2+ release events in frog skeletal muscle. J Physiol 497:581–588

    PubMed  CAS  Google Scholar 

  34. Launikonis BS, Zhou J, Royer L, Shannon TR, Brum G, Ríos E (2006) Depletion “skraps” and dynamic buffering inside the cellular calcium store. Proc Natl Acad Sci USA 103:2982–2987

    Article  PubMed  CAS  Google Scholar 

  35. Launikonis BS, Zhou J, Santiago D, Brum G, Rios E (2006) The changes in Ca2+ sparks associated with measured modifications of intra-store Ca2+ concentration in skeletal muscle. J Gen Physiol 128:45–54

    Article  PubMed  CAS  Google Scholar 

  36. Lee CH, Poburko D, Kuo KH, Seow CY, van Breemen C (2002) Ca2+ oscillations, gradients, and homeostasis in vascular smooth muscle. Am J Physiol Heart Circ Physiol 282:H1571–H1583

    PubMed  CAS  Google Scholar 

  37. Marx SO, Gaburjakova J, Gaburjakova M, Henrikson C, Ondrias K, Marks AR (2001) Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ Res 88:1151–1158

    PubMed  CAS  Google Scholar 

  38. Meissner G (1994) Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol 56:485–508

    Article  PubMed  CAS  Google Scholar 

  39. Mejia-Alvarez R, Kettlun C, Ríos E, Stern M, Fill M (1999) Unitary Ca2+ current through cardiac ryanodine receptor channels under quasi-physiological ionic conditions. J Gen Physiol 113:177–178

    Article  PubMed  CAS  Google Scholar 

  40. Melzer W, Ríos E, Schneider MF (1987) A general procedure for determining the rate of calcium release from the sarcoplasmic reticulum in skeletal muscle fibers. Biophys J 51:849–863

    PubMed  CAS  Google Scholar 

  41. Ogawa Y, Murayama T, Kurebayashi N (2002) Ryanodine receptor isoforms of non-mammalian skeletal muscle. Front Biosci 7:d1184–d1194

    Article  PubMed  CAS  Google Scholar 

  42. Ríos E, Launikonis BS, Royer L, Brum G, Zhou J (2006) The elusive role of store depletion in the control of intracellular calcium release. J Muscle Res Cell Motil 27:337–350

    Article  PubMed  CAS  Google Scholar 

  43. Ríos E, Pizarro G (1991) Voltage sensor of excitation–contraction coupling in skeletal muscle. Physiol Rev 71:849–908

    PubMed  Google Scholar 

  44. Ríos E, Pizarro G, Stefani E (1992) Charge movement and the nature of signal transduction in skeletal muscle excitation–contraction coupling. Annu Rev Physiol 54:109–133

    Article  PubMed  Google Scholar 

  45. Ríos E, Stern MD, Gonzalez A, Pizarro G, Shirokova N (1999) Calcium release flux underlying Ca2+ sparks of frog skeletal muscle. J Gen Physiol 114:31–48

    Article  PubMed  Google Scholar 

  46. Schneider MF (1994) Control of calcium release in functioning skeletal muscle fibers. Annu Rev Physiol 56:463–484

    Article  PubMed  CAS  Google Scholar 

  47. Schneider MF, Klein MG (1996) Sarcomeric calcium sparks activated by fiber depolarization and by cytosolic Ca2+ in skeletal muscle. Cell Calcium 20:123–128

    Article  PubMed  CAS  Google Scholar 

  48. Schneider MF, Simon BJ (1988) Inactivation of calcium release from the sarcoplasmic reticulum in frog skeletal muscle. J Physiol 405:727–745

    PubMed  CAS  Google Scholar 

  49. Schneider MF, Ward CW (2002) Initiation and termination of calcium sparks in skeletal muscle. Front Biosci 7:d1212–d1222

    Article  PubMed  CAS  Google Scholar 

  50. Shirokova N, Garcia J, Ríos E (1998) Local calcium release in mammalian skeletal muscle. J Physiol 512:377–384

    Article  PubMed  CAS  Google Scholar 

  51. Shirokova N, Shirokov R, Rossi D, Gonzalez A, Kirsch WG, Garcia J, Sorrentino V, Ríos E (1999) Spatially segregated control of Ca2+ release in developing skeletal muscle of mice. J Physiol 521:483–495

    Article  PubMed  CAS  Google Scholar 

  52. Shtifman A, Ward CW, Wang J, Valdivia HH, Schneider MF (2000) Effects of imperatoxin A on local sarcoplasmic reticulum Ca2+ release in frog skeletal muscle. Biophys J 79:814–827

    Article  PubMed  CAS  Google Scholar 

  53. Sobie EA, Dilly KW, dos Santos Cruz J, Lederer WJ, Jafri MS (2002) Termination of cardiac Ca2+ sparks: an investigative mathematical model of calcium-induced calcium release. Biophys J 83:59–78

    PubMed  CAS  Google Scholar 

  54. Soeller C, Cannell MB (2002) Estimation of the sarcoplasmic reticulum Ca2+ release flux underlying Ca2+ sparks. Biophys J 82:2396–2414

    PubMed  CAS  Google Scholar 

  55. Sorrentino V (1995) The ryanodine receptor family of intracellular calcium release channels. Adv Pharmacol 33:67–90

    Article  PubMed  CAS  Google Scholar 

  56. Stern MD, Pizarro G, Ríos E (1997) Local control model of excitation–contraction coupling in skeletal muscle. J Gen Physiol 110:415–440

    Article  PubMed  CAS  Google Scholar 

  57. Sun X-P, Callamaras N, Marchant JS, Parker I (1998) A continuum of InsP3-mediated elementary Ca2+ signalling events in Xenopus oocytes. J Physiol 509:67–80

    Article  PubMed  CAS  Google Scholar 

  58. Sutko JL, Airey JA (1996) Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol Rev 76:1027–1071

    PubMed  CAS  Google Scholar 

  59. Szappanos H, Smida-Rezgui S, Cseri J, Simut C, Sabatier JM, De Waard M, Kovacs L, Csernoch L, Ronjat M (2005) Differential effects of maurocalcine on Ca2+ release events and depolarization-induced Ca2+ release in rat skeletal muscle. J Physiol 565:843–853

    Article  PubMed  CAS  Google Scholar 

  60. Szentesi P, Szappanos H, Szegedi C, Gonczi M, Jona I, Cseri J, Kovacs L, Csernoch L (2004) Altered elementary calcium release events and enhanced calcium release by thymol in rat skeletal muscle. Biophys J 86:1436–1453

    PubMed  CAS  Google Scholar 

  61. Taylor CW, Genazzani AA, Morris SA (1999) Expression of inositol trisphosphate receptors. Cell Calcium 26:237–251

    Article  PubMed  CAS  Google Scholar 

  62. Tsugorka A, Ríos E, Blatter LA (1995) Imaging elementary events of calcium release in skeletal muscle cells. Science 269:1723–1726

    Article  PubMed  CAS  Google Scholar 

  63. Wang X, Weisleder N, Collet C, Zhou J, Chu Y, Hirata Y, Zhao X, Pan Z, Brotto M, Cheng H, Ma J (2005) Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nat Cell Biol 7:525–530

    Article  PubMed  CAS  Google Scholar 

  64. Ward CW, Schneider MF, Castillo D, Protasi F, Wang Y, Chen SR, Allen PD (2000) Expression of ryanodine receptor RyR3 produces Ca2+ sparks in dyspedic myotubes. J Physiol 525:91–103

    Article  PubMed  CAS  Google Scholar 

  65. Weisleder N, Brotto M, Komazaki S, Pan Z, Zhao X, Nosek T, Parness J, Takeshima H, Ma J (2006) Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release. J Cell Biol 174:639–645

    Article  PubMed  CAS  Google Scholar 

  66. Weisleder N, Csernoch L, Ferrante C, Szapannos H, Ma J (2006) Quantal nature of sarcoplasmic reticulum Ca release in mammalian skeletal muscle. Biophys J 90:1551a

    Google Scholar 

  67. Zhou J, Brum G, Gonzalez A, Launikonis BS, Stern MD, Ríos E (2003) Ca2+ sparks and embers of mammalian muscle. Properties of the sources. J Gen Physiol 122:95–114

    Article  PubMed  CAS  Google Scholar 

  68. Zhou J, Brum G, Gonzalez A, Launikonis BS, Stern MD, Ríos E (2005) Concerted vs. sequential. Two activation patterns of vast arrays of intracellular Ca2+ channels in muscle. J Gen Physiol 126:301–309

    Article  PubMed  CAS  Google Scholar 

  69. Zhou J, Csernoch L, Launikonis B, Brum G, Stern MD, Cheng H, Ríos E (2003) Concerted vs. sequential opening of vast arrays of channels in Ca2+ sparks of twitch muscle. Biophys J 84:9a

    Google Scholar 

  70. Zhou J, Yi J, Royer L, Launikonis BS, Gonzalez A, Garcia J, Ríos E (2006) A probable role of dihydropyridine receptors in repression of Ca2+ sparks demonstrated in cultured mammalian muscle. Am J Physiol Cell Physiol 290:C539–C553

    Article  PubMed  CAS  Google Scholar 

  71. ZhuGe R, Fogarty KE, Tuft RA, Lifshitz LM, Sayar K, Walsh Jr JV (2000) Dynamics of signaling between Ca2+ sparks and Ca2+-activated K+ channels studied with a novel image-based method for direct intracellular measurement of ryanodine receptor Ca2+ current. J Gen Physiol 116:845–864

    Article  PubMed  CAS  Google Scholar 

  72. Zucchi R, Ronca-Testoni S (1997) The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev 49:1–51

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author is indebted to doctors Szentesi and Dienes for their careful reading of the manuscript and for their help with the figures. This work was supported by the Hungarian National Research Fund (OTKA T049151)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Csernoch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csernoch, L. Sparks and embers of skeletal muscle: the exciting events of contractile activation. Pflugers Arch - Eur J Physiol 454, 869–878 (2007). https://doi.org/10.1007/s00424-007-0244-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0244-0

Keywords

Navigation