Skip to main content
Log in

The rise of [Na+]i during ischemia and reperfusion in the rat heart—underlying mechanisms

  • Cardiovascular System
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Intracellular Na+ concentration ([Na+]i) rises in the heart during ischemia, and on reperfusion, there is a transient rise followed by a return toward control. These changes in [Na+]i contribute to ischemic and reperfusion damage through their effects on Ca2+ overload. Part of the rise of [Na+]i during ischemia may be caused by increased activity of the cardiac Na+/H+ exchanger (NHE1), activated by the ischemic rise in [H+]i. In support of this view, NHE1 inhibitors reduce the [Na+]i rise during ischemia. Another possibility is that the rise of [Na+]i during ischemia is caused by Na+ influx through channels. We have reexamined these issues by use of two different NHE1 inhibitors, amiloride, and zoniporide, in addition to tetrodotoxin (TTX), which blocks voltage-sensitive Na+ channels. All three drugs produced cardioprotection after ischemia, but amiloride (100 μM) and TTX (300 nM) prevented the rise in [Na+]i during ischemia, whereas zoniporide (100 nM) did not. Both amiloride and zoniporide prevented the rise of [Na+]i on reperfusion, whereas TTX was without effect. In an attempt to explain these differences, we measured the ability of the three drugs to block Na+ currents. At the concentrations used, TTX reduced the transient Na+ current (I Na) by 11 ± 2% while amiloride and zoniporide were without effect. In contrast, TTX largely eliminated the persistent Na+ current (I Na,P) and amiloride was equally effective, whereas zoniporide had a substantially smaller effect reducing I Na,P to 41 ± 8%. These results suggest that part of the effect of NHE1 inhibitors on the [Na+]i during ischemia is by blockade of I Na,P. The fact that a low concentration of TTX eliminated the rise of [Na+]i during ischemia suggests that I Na,P is a major source of Na+ influx in this model of ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allen DG, Orchard CH (1987) Myocardial contractile function during ischemia and hypoxia. Circ Res 60:153–168

    PubMed  CAS  Google Scholar 

  2. Allen DG, Xiao XH (2001) Letter to the Editor; Na+ entry during ischemia, reperfusion and preconditioning. Cardiovasc Res 50:164–166

    Article  CAS  Google Scholar 

  3. Avkiran M (1999) Rational basis for use of sodium–hydrogen exchange inhibitors in myocardial ischemia. Am J Cardiol 83:10G–17G

    Article  PubMed  CAS  Google Scholar 

  4. Avkiran M (2001) Protection of the ischaemic myocardium by Na+/H+ exchange inhibitors: potential mechanisms of action. Basic Res Cardiol 96:306–311

    Article  PubMed  CAS  Google Scholar 

  5. Avkiran M, Gross G, Karmazyn M, Klein M, Murphy E, Ytrehus K (2001) Letter to the Editor—Na+/H+ exchange in ischemia, reperfusion and preconditioning. Cardiovasc Res 50:162–163

    Article  PubMed  CAS  Google Scholar 

  6. Avkiran M, Marber MS (2002) Na+/H+ exchange inhibitors for cardioprotective therapy: progress, problems and prospects. J Am Coll Cardiol 39:747–753

    Article  PubMed  CAS  Google Scholar 

  7. Carmeliet E (1999) Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev 79:917–1017

    PubMed  CAS  Google Scholar 

  8. Chattou S, Coulombe A, Diacono J, Le Grand B, John G, Feuvray D (2000) Slowly inactivating component of sodium current in ventricular myocytes is decreased by diabetes and partially inhibited by known Na+–H+ exchange blockers. J Mol Cell Cardiol 32:1181–1192

    Article  PubMed  CAS  Google Scholar 

  9. Cross HR, Radda GK, Clarke K (1995) The role of Na+/K+ ATPase activity during low flow ischemia in preventing myocardial injury: a 31P, 23Na and 87Rb NMR spectroscopic study. Magn Reson Med 34:673–685

    Article  PubMed  CAS  Google Scholar 

  10. Decking UK, Hartmann M, Rose H, Bruckner R, Meil J, Schrader J (1998) Cardioprotective actions of KC 12291. I. Inhibition of voltage-gated Na+ channels in ischemia delays myocardial Na+ overload. Naunyn Schmiedebergs Arch Pharmacol 358:547–553

    Article  PubMed  CAS  Google Scholar 

  11. Demaurex N, Romanek RR, Orlowski J, Grinstein S (1997) ATP dependence of Na+/H+ exchange. Nucleotide specificity and assessment of the role of phospholipids. J Gen Physiol 109:117–128

    Article  PubMed  CAS  Google Scholar 

  12. Frelin C, Vigne P, Lazdunski M (1984) The role of the Na+/H+ exchange system in cardiac cells in relation to the control of the internal Na+ concentration. A molecular basis for the antagonistic effect of ouabain and amiloride on the heart. J Biol Chem 259:8880–8885

    PubMed  CAS  Google Scholar 

  13. Goss GG, Woodside M, Wakabayashi S, Pouyssegur J, Waddell T, Downey GP et al (1994) ATP dependence of NHE-1, the ubiquitous isoform of the Na+/H+ antiporter. Analysis of phosphorylation and subcellular localization. J Biol Chem 269:8741–8748

    PubMed  CAS  Google Scholar 

  14. Haigney MC, Lakatta EG, Stern MD, Silverman HS (1994) Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading. Circulation 90:391–399

    PubMed  CAS  Google Scholar 

  15. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  16. Hammarstrom AK, Gage PW (2002) Hypoxia and persistent sodium current. Eur Biophys J 31:323–330

    Article  PubMed  CAS  Google Scholar 

  17. Hartmann M, Decking UK (1999) Blocking Na+–H+ exchange by cariporide reduces Na+-overload in ischemia and is cardioprotective. J Mol Cell Cardiol 31:1985–1995

    Article  PubMed  CAS  Google Scholar 

  18. Hartmann M, Decking UK (2003) R 56865 exerts cardioprotective properties independent of the intracellular Na(+)-overload in the guinea pig heart. Naunyn Schmiedebergs Arch Pharmacol 368:160–165

    Article  PubMed  CAS  Google Scholar 

  19. Hove MT, Jansen MA, Nederhoff MG, Van Echteld CJ (2007) Combined blockade of the Na+ channel and the Na+/H+ exchanger virtually prevents ischemic Na+ overload in rat hearts. Mol Cell Biochem (in press)

  20. Jansen MA, Van Emous JG, Nederhoff MG, Van Echteld CJ (2004) Assessment of myocardial viability by intracellular 23Na magnetic resonance imaging. Circulation 110:3457–3464

    Article  PubMed  CAS  Google Scholar 

  21. Ju YK, Saint DA, Gage PW (1996) Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol 497:337–347

    PubMed  CAS  Google Scholar 

  22. Karmazyn M (1988) Amiloride enhances postischemic ventricular recovery: possible role of Na+–H+ exchange. Am J Physiol 255:H608–H615

    PubMed  CAS  Google Scholar 

  23. Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K (1999) The myocardial Na+–H+ exchange : structure, regulation, and its role in heart disease. Circ Res 85:777–786

    PubMed  CAS  Google Scholar 

  24. Kleyman TR, Cragoe EJ (1988) Amiloride and its analogs as tools in the study of ion transport. J Membr Biol 105:1–21

    Article  PubMed  CAS  Google Scholar 

  25. Knight DR, Smith AH, Flynn DM, MacAndrew JT, Ellery SS, Kong JX et al (2001) A novel sodium–hydrogen exchanger isoform-1 inhibitor, zoniporide, reduces ischemic myocardial injury in vitro and in vivo. J Pharmacol Exp Ther 297:254–259

    PubMed  CAS  Google Scholar 

  26. Le Grand B, Vie B, Talmant JM, Coraboeuf E, John GW (1995) Alleviation of contractile dysfunction in ischemic hearts by slowly inactivating Na+ current blockers. Am J Physiol 269:H533–H540

    PubMed  Google Scholar 

  27. Marala RB, Brown JA, Kong JX, Tracey WR, Knight DR, Wester RT et al (2002) Zoniporide: a potent and highly selective inhibitor of human Na(+)/H(+) exchanger–1. Eur J Pharmacol 451:37–41

    Article  PubMed  CAS  Google Scholar 

  28. Meng HP, Lonsberry BB, Pierce GN (1991) Influence of perfusate pH on the postischemic recovery of cardiac contractile function: involvement of sodium–hydrogen exchange. J Pharmacol Exp Ther 258:772–777

    PubMed  CAS  Google Scholar 

  29. Murphy E, Perlman M, London RE, Steenbergen C (1991) Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res 68:1250–1258

    PubMed  CAS  Google Scholar 

  30. Park CO, Xiao XH, Allen DG (1999) Changes in intracellular sodium and pH in the rat heart during ischaemia: role of the Na+/H+ exchanger. Am J Physiol 276:H1581–H1590

    PubMed  CAS  Google Scholar 

  31. Pike MM, Luo CS, Clark MD, Kirk KA, Kitakaze M, Madden MC et al (1993) NMR measurements of Na+ and cellular energy in ischemic rat heart: role of Na+/H+ exchange. Am J Physiol 265:H2017–H2026

    PubMed  CAS  Google Scholar 

  32. Saint DA, Ju YK, Gage PW (1992) A persistent sodium current in rat ventricular myocytes. J Physiol 453:219–231

    PubMed  CAS  Google Scholar 

  33. Takeo S, Tanonaka K (2004) Na+ overload-induced mitochondrial damage in the ischemic heart. Can J Physiol Pharmacol 82:1033–1043

    Article  PubMed  CAS  Google Scholar 

  34. Tani M (1990) Mechanisms of Ca2+ overload in reperfused ischemic myocardium. Ann Rev Physiol 52:543–559

    CAS  Google Scholar 

  35. Tani M, Neely JR (1989) Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+–Na+ and Na+–Ca2+ exchange. Circ Res 65:1045–1056

    PubMed  CAS  Google Scholar 

  36. Theroux P, Chaitman BR, Danchin N, Erhardt L, Meinertz T, Schroeder JS et al (2000) Inhibition of the sodium–hydrogen exchanger with cariporide to prevent myocardial infarction in high-risk ischemic situations. Main results of the GUARDIAN trial. Guard during ischemia against necrosis (GUARDIAN) Investigators. Circulation 102:3032–3038

    PubMed  CAS  Google Scholar 

  37. Turvey SE, Allen DG (1994) Changes in myoplasmic sodium concentration during exposure to lactate in perfused rat heart. Cardiovasc Res 28:987–993

    Article  PubMed  CAS  Google Scholar 

  38. Undrovinas AI, Fleidervish IA, Makielski JC (1992) Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circ Res 71:1231–1241

    PubMed  CAS  Google Scholar 

  39. Van Emous J, Nederhoff MG, Ruigrok TJ, Van Echteld C (1997) The role of the Na+ channel in the accumulation of intracellular Na+ during myocardial ischemia: consequences for post-ischemic recovery. J Mol Cell Cardiol 29:85–96

    Article  PubMed  Google Scholar 

  40. Vandenberg JI, Metcalfe JC, Grace AA (1993) Mechanisms of pHi recovery after global ischemia in the perfused heart. Circ Res 72:993–1003

    PubMed  CAS  Google Scholar 

  41. Verdonck F, Bielen FV, Ver-Donck L (1991) Preferential block of the veratridine-induced, non-inactivating Na+ current by R56865 in single cardiac Purkinje cells. Eur J Pharmacol 203:371–378

    Article  PubMed  CAS  Google Scholar 

  42. Wakabayashi S, Shigekawa M, Pouyssegur J (1997) Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev 77:51–74

    PubMed  CAS  Google Scholar 

  43. Weissberg PL, Little PJ, Cragoe EJJ, Bobik A (1989) The pH of spontaneously beating cultured rat heart cells is regulated by an ATP–calmodulin-dependent Na+/H+ antiport. Circ Res 64:676–685

    PubMed  CAS  Google Scholar 

  44. Wu ML, Vaughan-Jones RD (1994) Effect of metabolic inhibitors and second messengers upon Na+–H+ exchange in the sheep cardiac Purkinje fibre. J Physiol 478:301–313

    PubMed  CAS  Google Scholar 

  45. Xiao XH, Allen DG (1999) Role of the Na+/H+ exchanger during ischemia and preconditioning in the isolated rat heart. Circ Res 85:723–730

    PubMed  CAS  Google Scholar 

  46. Xiao XH, Allen DG (2002) The role of endogenous angiotensin II in ischemia, reperfusion and preconditioning of the isolated rat heart. Pflügers Arch 445:643–650

    Google Scholar 

Download references

Acknowledgment

This study is supported by the Australian National Health and Medical Research Council. IW was the recipient of a Northcote Graduate Scholarship, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, I.A., Xiao, Xh., Ju, Yk. et al. The rise of [Na+]i during ischemia and reperfusion in the rat heart—underlying mechanisms. Pflugers Arch - Eur J Physiol 454, 903–912 (2007). https://doi.org/10.1007/s00424-007-0241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0241-3

Keywords

Navigation